No electronic devices are allowed. There are 5 page and 5 problems. Each problem is worth 6 points, for a total of 30 points.

1. Complete Graphs. Let K_{n} be the complete graph on n vertices. Let $K_{m, n}$ be the complete bipartite graph on $m+n$ vertices.
(a) How many edges does K_{7} have?

Solution. In general, K_{n} has $\binom{n}{2}$ edges. So K_{7} has $\binom{7}{2}=21$ edges.
(b) How many edges does $K_{4,5}$ have?

Solution. In general, $K_{m, n}$ has $m n$ edges. So $K_{4,5}$ has $4 \cdot 5=20$ edges.
(c) How many edges are in the complement of $K_{4,5}$? [The complement has the same vertices as $K_{4,5}$, but switches edges with non-edges.]

Solution. In general, the complement of $K_{m, n}$ has $\binom{m}{2}+\binom{n}{2}$ edges, so the complement of $K_{4,5}$ has $\binom{4}{2}+\binom{5}{2}=6+10=16$ edges.

Remark: Given a simple graph G with n vertices, with complement G^{\prime}. Then

$$
\#(\text { edges in } G)+\#\left(\text { edges in } G^{\prime}\right)=\binom{n}{2}
$$

because each of the possible $\binom{n}{2}$ edges between the n vertices occurs in exactly one of G or G^{\prime}. This formula agrees with our solutions to (b) and (c) because

$$
\begin{aligned}
\#\left(\text { edges in } K_{4,5}\right)+\#\left(\text { edges in } K_{4,5}^{\prime}\right) & =20+16 \\
& =36 \\
& =\binom{4+5}{2} .
\end{aligned}
$$

2. Regular Graphs. A graph is called d-regular when every vertex has degree d.
(a) Draw a connected 3 -regular graph with 8 vertices.

Solution.

(b) Draw a non-connected 3 -regular graph with 8 vertices.

Solution.

(c) Explain why a 3-regular graph with 9 vertices does not exist. [Hint: Handshaking.]

Solution. The Handshaking Lemma says that the sum of the vertex degrees equals twice the number of edges. If there existed a 3 -regular graph with 9 vertices and e edges then we would have

$$
2 e=\sum \text { vertex degrees }=\underbrace{3+3+\cdots+3}_{9 \text { times }}=3 \cdot 9=27,
$$

which is impossible because $2 e$ is even.
3. Trees. A tree is a connected graph with $e=n-1$, where n is the number of vertices and e is the number of edges.
(a) Draw a tree with vertex degrees $1,1,1,1,1,1,4,4$.

Solution.

(b) Draw three non-isomorphic trees, each with 5 vertices.

Solution.

(c) Explain why there is no tree with vertex degrees $1,1,1,1,2$.

Solutions. A tree with vertex degrees $1,1,1,1,2$ would have $n=5$ vertices and $e=n-1=4$ edges. On the other hand, by the Handshaking Lemma we must have

$$
2 e=1+1+1+1+2=6,
$$

which implies that $e=3$. Contradiction.
4. Planar Graphs. A graph is called planar if it can be drawn in the plane with no crossing edges. Such a drawing divides the plane into faces. The degree of a face is the number of edges along its perimeter.
(a) Make a planar drawing of a graph with six faces, each of degree 4. [Hint: A cube.]

Solution.

(b) Let G be a planar graph drawing with n vertices, e edges and f faces. Suppose that every face has degree 4 . In this case explain why $2 e=4 f$.

Solution. The Handshaking Lemma for faces says that

$$
2 e=\sum \text { face degrees }=\underbrace{4+4+\cdots+4}_{f \text { times }}=4 f .
$$

(c) Continuing from part (b), use Euler's formula $n-e+f=2$ to show that $e=2 n-4$. Check that your drawing in part (a) satisfies this equation.

Solution. We have

$$
\begin{aligned}
n-e+f & =2 \\
n-e+e / 2 & =2 \\
2 n-2 e+e & =4 \\
2 n-4 & =e .
\end{aligned} \quad f=e / 2 \text { from (b) }
$$

This agrees with our drawing in part (a) which has $n=8$ vertices and $e=12$ edges.
5. Induction. Let G be a graph with n vertices, e edges and k connected components. In this problem you will prove by induction on e that $n-k \leq e$.
(a) If $e=0$, explain why we must have $n-k \leq e$.

Solution. If $e=0$ then our graph consists of n disconnected vertices, and hence $k=n$ connected components. Hence $n-k=n-n=0 \leq e$.
(b) Now suppose that $e \geq 1$ and let G^{\prime} be a graph obtained from G by deleting a random edge. (Don't delete any vertices.) Let $n^{\prime}, e^{\prime}, k^{\prime}$ be the numbers of vertices, edges and components of the graph G^{\prime}. Express $n^{\prime}, e^{\prime}, k^{\prime}$ in terms of n, e, k.

Solution. Let G^{\prime} be obtained from G by deleting an arbitrary edge. Since we deleted a single edge we have $e^{\prime}=e-1$. But we didn't delete any vertices, so $n^{\prime}=n$. What about connected components? Deleting an edge might increase the connected components by one: $k^{\prime}=k+1$. Of it might not change the number of connected components: $k^{\prime}=k$.
(c) By induction we may suppose that $n^{\prime}-k^{\prime} \leq e^{\prime}$. Combine this with your answer from part (b) to prove that $n-k \leq e$.

Solution. Suppose for induction that $n^{\prime}-k^{\prime} \leq e^{\prime}$ in G^{\prime}. In this case we will show that $n-k \leq e$ in the original graph G. From part (b) we have $n^{\prime}=n$ and $e^{\prime}=e-1$. There are two cases for k^{\prime} :

- If $k^{\prime}=k+1$ then we have

$$
n-k=n^{\prime}-\left(k^{\prime}-1\right)=n^{\prime}-k^{\prime}+1 \leq e^{\prime}+1=e .
$$

- If $k^{\prime}=k$ then we have

$$
n-k=n^{\prime}-k^{\prime} \leq e^{\prime}=e-1 \leq e .
$$

In either case, we have $n-k \leq e$ as desired.

