1. Degrees. Every graph in this problem has 6 vertices.
(a) Draw a graph with degrees $2,2,2,2,2,2$.

(b) Draw a graph with degrees $1,1,2,2,2,2$.

(c) Explain why there is no graph with degrees $1,1,1,2,2,2$.

Proof. The degree sum of a graph is always even (because it equals twice the number of edges), but $1+1+1+2+2+2=9$ is an odd number.

2. Isomorphism.

(a) Prove that the following graphs are isomorphic.

Observe that the labelings match:

(b) Prove that the following graphs are not isomorphic.

The degrees are not the same. For example the right graph has a vertex of degree 4 but the left graph does not:

(c) Draw two non-isomorphic trees, each with 4 vertices.

Here they are:

5. Graphs.

(a) Draw a disconnected 2-regular graph with 7 vertices.
(b) Draw a graph on 7 vertices with degree sequence $1,2,2,2,2,2,3$.
(c) Let $G=K_{4,4}$ be the complete bipartite graph on two sets of 4 vertices. Tell me the number of edges in G and the number of edges in the complement \bar{G}.
where the multinomial coefficients are defined by

$$
\binom{\ell}{k_{1}, k_{2}, \ldots, k_{n}}=\frac{\ell!}{k_{1}!k_{2}!\cdots k_{n}!}
$$

and where the sum is taken over all $k_{1}, \ldots, k_{n} \in \mathbb{N}$ such that $k_{1}+\cdots k_{n}=\ell$.

- Substituting $a_{1}=\cdots=a_{n}=1$ into the multinomial theorem gives

$$
n^{\ell}=\sum\binom{\ell}{k_{1}, \ldots, k_{n}}
$$

What does this mean? The left side counts the words of length ℓ from the alphabet $\left\{a_{1}, \ldots, a_{n}\right\}$. The right side counts the same words, but it groups them according to the number of each type of letter. We use the fact that

$$
\binom{\ell}{k_{1}, k_{2}, \ldots, k_{n}}=\#\left\{\begin{array}{c}
\text { words of length } \ell \text { containing } \\
k_{i} \text { copies of } a_{i} \text { for each } i
\end{array}\right\}
$$

- Example: How many arrangements of the letters $e, f, f, l, o, r, e, s, c, e, n, c, e$?

Topics from Chapter 5

- A simple graph is a set of vertices, together with a set of unordered pairs of vertices, called edges. For example, let $V=\{1,2,3,4,5,6\}$ and $E=\{\{1,2\},\{2,3\},\{1,3\},\{3,4\},\{4,5\}\}$.
- It is helpful to draw a graph, but the way you draw it is not important:

- If you permute labels (or if you don't draw labels) then you obtain isomorphic graphs:

- To prove that two graphs are isomorphic you must label them. To prove that two graphs are not isomorphic you need a trick.
- The easiest trick is to look at the degrees, since these are preserved under isomorphism. Let $G=(V, E)$ be a simple graph. Then for each vertex $u \in V$ we define its degree as

$$
\operatorname{deg}(u):=\#\{v \in V:\{u, v\} \in E\} .
$$

- The Handshaking Lemma says that

$$
\sum_{u \in V} \operatorname{deg}(u)=2 \cdot \# E .
$$

Proof: Let L be the set of lollipops in the graph (a lollipop is an edge together with one of its vertices). By choosing the edge first we have $\# L=2 \cdot \# E$. By choosing the vertex first we have $\# L=\sum_{u \in V} \operatorname{deg}(u)$.

- It follows that the number of odd-degree vertices is even. For example, there is no graph with degree sequence $2,2,2,3,3,4,5$ because $2+2+2+3+3+4+5$ is an odd number.
- A graph is called d-regular if each vertex has degree d. If G is a d-regular graph with n vertices then it follows from the First Theorem that $d n$ is even. For example, there does not exist a 3 -regular graph on 7 vertices. Exercise: Draw a 3 regular graph on 8 vertices. Exercise: Prove that there exist two non-isomorphic 3-regular graphs on 6 vertices.
- Example: The hypercube Q_{n} is an n-regular graph on 2^{n} vertices. The vertices are binary strings of length n and the edges are "bit flips." Exercise: Compute the number of edges ${ }^{\text { }}$
- Famous graphs include the path P_{n}, cycle C_{n}, complete graph K_{n} and the complete bipartite graph $K_{m, n}$. You should know all the important properties of these graphs and be able to draw them.
- Let $G=(V, E)$ be a simple graph. The complement \bar{G} has the same vertices but the edges and the non-edges have been flipped. Thus if G has n vertices and e edges then \bar{G} has n vertices and $\binom{n}{2}-e$ edges. Exercise: Draw the graph $K_{3,4}$ and its complement.
- A u, v-walk of length ℓ in $G=(V, E)$ is a sequence of vertices $u=v_{0}, v_{1}, \ldots, v_{\ell}=v \in V$ such that $\left\{v_{i-1}, v_{i}\right\} \in E$ for all $i \in\{1, \ldots, \ell\}$. A path is a walk with no repeated vertex. By recursion every u, v-walk contains a u, v-path. Proof: Find a repeated vertex and cut out everything in between. Repeat until there is no repeated vertex.
- We say that the graph is connected if for all $u, v \in V$ there exists a u, v-path. More generally, we define the connected components $G=G_{1} \cup G_{2} \cup \cdots \cup G_{k}$ so that vertices $u, v \in V$ are connected if and only if they are in the same component. Picture:

[^0]

- If G has n vertices, e edges and k components then $n-k \leqslant e$. [Remark: This result holds even for multigraphs.]

Proof by induction on e : Fix $n \geqslant 0$. If $e=0$ then $k=n$ and hence $n-k=0=e$. Now suppose that $e \geqslant 1$ and delete a random edge to obtain a graph G^{\prime} with $n^{\prime}, e^{\prime}, k^{\prime}$. Note that $n^{\prime}=n$ and $e^{\prime}=e-1$. Since $e^{\prime}<e$ we can assume by induction that $n^{\prime}-k^{\prime} \leqslant e^{\prime}$. But we also know that $k^{\prime} \leqslant k+1$ since deleting an edge creates at most one extra component (and maybe none). Hence

$$
e=e^{\prime}-1 \geqslant\left(n^{\prime}-k^{\prime}\right)-1=n-1-k^{\prime} \geqslant n-1-(k+1)=n-k .
$$

- If G is a simple graph with n vertices, e edges and k components then $e \leqslant(\underset{2}{n-(k-1)})$. You do not need to prove this. The number of edges is maximized when every component but one is a single vertex and the last component is a complete graph on $n-(k-1)$ vertices.
- A circuit is a walk that begins and ends at the same vertex. A cycle is a circuit that has no repeated vertices (except for the basepoint). Every circuit contains a cycle.
- First Application: A graph is called bipartite if it has no odd cycles. Equivalently, we can color the vertices with two colors such that no two vertices of the same color share an edge. (You don't need to know the proof.)
- Second Application: A graph is called a forest if it has no cycles at all. One can show that this happens exactly when $e=n-k$, i.e., when the number of edges is minimized. A forest with one connected component $(k=1)$ is called a tree. In other words, a tree is a connected graph with no cycles. Equivalently, a tree is a connected graph on n vertices with $e=n-1$ edges. Exercise: Draw a forest with $n=12$ and $k=3$. Verify that the number of edges is $e=n-k=9$.
- Let G be a tree on vertex set $\{1,2, \ldots, n\}$ and let $d_{i}:=\operatorname{deg}(i)$. Since G has $e=n-1$ edges we must have

$$
\sum_{i=1}^{n} d_{i}=2(n-1)
$$

and hence

$$
\sum_{i=1}^{n}\left(d_{i}-1\right)=\sum_{i=1}^{n} d_{i}-\sum_{i=1}^{n} 1=2(n-1)-n=2 n-2-n=n-2
$$

- Cayley's Tree Formula says that

$$
\binom{n-2}{d_{1}-1, d_{2}-1, \ldots, d_{n}-1}=\#\left\{\begin{array}{l}
\text { trees on vertex set }\{1, \ldots, n\} \\
\text { where vertex } i \text { has degree } d_{i}
\end{array}\right\} .
$$

By summing over all possible degrees we obtain

$$
\#\{\text { labeled trees on } n \text { vertices }\}=\sum\binom{n-2}{d_{1}-1, d_{2}-1, \ldots, d_{n}-1}=n^{n-2}
$$

Exercise: Verify that this last step follows from the multinomial theorem.

- Prüfer's proof of Cayley's Formula: Given a tree T on $\{1,2, \ldots, n\}$, delete the smallest leaf (vertex of degree one) and let p_{1} be the name of its parent. Repeat to obtain a sequence $\left(p_{1}, p_{2}, \ldots, p_{n-2}\right)$ called the Prüfer code of the tree. One can show that every word of length $n-2$ from the alphabet $\{1, \ldots, n\}$ is the Prüfer code of some tree. (You don't need to show this.) Furthermore, the number i shows up exactly $d_{i}-1$ times in the code. Example:

[^0]: ${ }^{1}$ Hao Huang recently (July 1st, 2019) proved the following result, which settled a 30 -year-old conjecture: Let A be a subset of vertices in the hypercube Q_{n} satisfying $\# A \geqslant 2^{n-1}+1$. Then there exists a vertex $a \in A$ that has at least \sqrt{n} neighbors in A.

