Math 309

Exam 3 Practice Problems with Solutions

Problem 1. Let G be a connected, simple graph (no loops, no multiple edges) with n vertices and e edges. If G has a planar drawing then we know that $e \leq 3 n-6$. (You don't need to prove this.) Use this fact to prove that the complete graph K_{6} has no planar drawing.

Solution. The graph K_{6} has $n=6$ vertices and $e=\binom{6}{2}=15$ edges. But then $e \leq 3 n-6$ is false because $15 \leq 18-6$ is false. Hence K_{6} has no planar drawing.

Remark. In general, the complete graph K_{n} has n vertices and $\binom{n}{2}$ edges, because each pair of vertices is connected by an edge.

Problem 2. Let G be a connected, simple graph (no loops, no multiple edges) with n vertices and e edges. Suppose that G has a planar drawing with f faces. In this case show that $2 e \geq 3 f$.

Solution. By the Handshaking Lemma we have

$$
2 e=\sum \text { face degrees }
$$

Since G has no loops and no multiple edges, each face in the drawing must have degree ≥ 3, hence

$$
2 e=\sum \text { face degrees } \geq \underbrace{3+3+\cdots+3}_{f \text { times }}=3 f .
$$

Problem 3. A tree is a connected graph with no cycles. Every tree can be drawn in the plane. (You don't need to prove this.) If T is a tree with n vertices and e edges, use Euler's formula to show that $e=n-1$.

Solution. If a graph with n vertices and e edges has a planar drawing with f faces then Euler's formula says $n-e+f=2$. A planar drawing of a tree has exactly one face, because it has no cycles. Hence Euler's formula gives

$$
\begin{aligned}
n-e+f & =2 \\
n-e+1 & =2 \\
n-1 & =e .
\end{aligned}
$$

Problem 4. There are exactly 4 graphs with vertices $\{a, b, c, d\}$ and vertex degrees $1,1,1,3$. Draw them.

Solution.

Problem 5. For any graph with n vertices, e edges and k connected components, we must have $n-k \leq e$. Use this to show that a graph with vertex degrees $1,1,1,1,1,1,2,2,2$ must have at least three connected components.

Solution. A graph with these degrees has $n=9$ and

$$
e=\frac{1}{2}(1+1+1+1+1+1+2+2+2)=6 .
$$

But then $n-1 \leq e$ and $n-2 \leq e$ are false, so this graph cannot have one or two components. It must have at least three connected components.

Problem 6. We define the graph $K_{\ell, m, n}$ as follows. There are $\ell+m+n$ vertices, divided into three sets A, B, C of size ℓ, m, n, respectively. The edges consist of all pairs $a b, a c$ and $b c$ with $a \in A, b \in B$ and $c \in C$.
(a) Draw the graph $K_{2,2,2}$. How many edges does it have?
(b) How many edges are in the graph $K_{\ell, m, n}$?

Solution. (a):

(b): There are ℓm edges between A and B, there are ℓn edges between A and C, and there are $m n$ edges between B and C :

Hence the total number of edges is

$$
\ell m+\ell n+m n
$$

