No electronic devices are allowed. There are 5 page and 5 problems. Each problem is worth 6 points, for a total of 30 points.

1. Arithmetic.

(a) Compute the quotient and remainder of 35 modulo 14.

The quotient q and remainder r are the unique integers satisfying

$$
\left\{\begin{array}{l}
35=14 q+r \\
0 \leq r<14
\end{array}\right.
$$

Note that $q=2$ and $r=7$ will work.
(b) Convert the binary expression $(1111)_{2}$ into decimal (i.e., base 10).

$$
\begin{aligned}
(1111)_{2} & =1 \cdot 2^{0}+1 \cdot 2^{1}+1 \cdot 2^{2}+1 \cdot 2^{3} \\
& =1+2+4+8 \\
& =15 .
\end{aligned}
$$

(c) Convert the decimal expression 17 into base 3 .

Divide 17 by 3 and then divide each successive quotient by 3 :

$$
\begin{aligned}
17 & =3 \cdot 5+2 \\
5 & =3 \cdot 1+2 \\
1 & =3 \cdot 0+1 .
\end{aligned}
$$

Then use back substitution:

$$
\begin{aligned}
17 & =3 \cdot 5+2 \\
& =3 \cdot(3 \cdot 1)+2 \\
& =3 \cdot(3 \cdot(3 \cdot 0+1)+2)+2 \\
& =3^{3} \cdot 0+3^{2} \cdot 1+3^{1} \cdot 2+2 .
\end{aligned}
$$

We conclude that

$$
17=(0122)_{3}=(122)_{3}
$$

2. Modular Arithmetic.

(a) Apply the Extended Euclidean Algorithm to find integers $x, y \in \mathbb{Z}$ satisfying

$$
17 x+7 y=1 .
$$

We consider the set of triples (x, y, r) satisfying $17 x+7 y=r$. Starting with the obvious triples $(1,0,17)$ and $(0,1,7)$ we perform the steps of the Euclidean Algorithm on the third coordinates until we obtain a triple of the form $(x, y, 1)$:

x	y	r	operation
1	0	17	
0	1	7	
1	-2	3	$($ row 1) $-2 \cdot($ row 2)
-2	5	1	(row 2)-2•(row 3)

We conclude that $17(-2)+7(5)=1$
(b) Use your answer from (a) to find a number $k \in \mathbb{Z}$ satisfying $7 k \equiv 1(\bmod 17)$.

Since $17 \equiv 0(\bmod 17)$ we have

$$
17 \cdot 5 \equiv 1-17(-2) \equiv 1-0(-2) \equiv 1(\bmod 17) .
$$

(c) Use your answer from (b) to solve the congruence $7 c \equiv 4(\bmod 17)$ for c.

We solve this by multiplying both sides by 5 :

$$
\begin{aligned}
7 c & \equiv 4 \\
5 \cdot 7 c & \equiv 5 \cdot 4 \\
1 c & \equiv 20 \\
c & \equiv 3(\bmod 17) .
\end{aligned}
$$

3. Bijection.

(a) Write down all rearrangements of the letters a, a, b, b, b.

```
aabbb baabb bbaab bbbaa
ababb babab bbaba
abbab babba
abbba
```

(b) Write down all subsets of size 2 from the set $\{1,2,3,4,5\}$.

$$
\begin{array}{llll}
\{1,2\} & \{2,3\} & \{3,4\} & \{4,5\} \\
\{1,3\} & \{2,4\} & \{3,5\} & \\
\{1,4\} & \{2,5\} & & \\
\{1,5\} & & &
\end{array}
$$

(c) Describe an explicit bijection between your answers from (a) and (b).

The word with a 's in positions i and j corresponds to the subset $\{i, j\} \subseteq\{1,2,3,4,5\}$. I have elements in (a) and (b) to illustrate this bijection.
4. Counting. Count the possibilities in each case. Don't write out all the examples.
(a) Words of length 3 from the alphabet $\{a, b, c\}$. Repeated letters are allowed.

There are three possibilities for each letter, hence the total is

$$
\underbrace{3}_{\text {1st letter }} \times \underbrace{3}_{2 \text { nd letter }} \times \underbrace{3}_{3 \mathrm{rd} \text { letter }}=3^{3}=27 .
$$

(b) Rearrangements of the letters b, u, b, b, l, e.

There are 3 b 's, $1 \mathrm{u}, 1 \mathrm{l}$ and 1 e . Hence the total number of arrangements is

$$
\frac{6!}{3!1!1!1}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 1}=120 .
$$

(c) Non-negative integer solutions to the equation $w+x+y+z=5$.

Each solution corresponds to a sequence of 5 stars and 3 bars:

The number of such sequences is

$$
\binom{8}{5,3}=\frac{8!}{5!3!}=\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}=56 .
$$

5. Counting Proof. Let i, j, k be non-negative integers and suppose that $i+j+k=n$. Then we have the following identity:

$$
\binom{n}{i}\binom{n-i}{j}=\frac{n!}{i!j!k!} .
$$

(a) Algebraic Proof. Prove the identity using the formula $\binom{\ell}{m}=\frac{\ell!}{m!(\ell-m)!}$.

Since $n-i-j=k$ we have

$$
\binom{n}{i}\binom{n-i}{j}=\frac{n!}{i!(n-i)!} \cdot \frac{(n-i)!}{j!(n-i-j)!}=\frac{n!}{i!j!(n-i-j)!}=\frac{n!}{i!j!k!} .
$$

(b) Counting Proof. We know that $n!/(i!j!k!)$ is the number of words of length n containing i copies of " a ", j copies of " b " and k copies of " c ". Explain why these words are also counted by the formula $\binom{n}{i}\binom{n-i}{j}$.

In order to create a word of length n containing i copies of a, j copies of b and k copies of c, we first choose i positions from the set $\{1, \ldots, n\}$ and place the a 's in these positions. Then we choose j positions from the remaining $n-i$ positions, and place the b 's in these positions. At this point there are $n-i-j=k$ positions remaining, and we fill these positions with c 's. The total number of possibilities is

$$
\underbrace{\binom{n}{i}}_{\begin{array}{c}
\text { t choose where } \\
\text { oput the } a \text { 's }
\end{array}} \times \underbrace{\binom{n-i}{j}}_{\begin{array}{c}
\text { then choose where } \\
\text { to put the } b \text { 's }
\end{array}} .
$$

We can also write

where the third factor equals 1 because $n-i-j=k$.
For example, with $n=7, i=3, j=2$ and $k=2$, we first choose a set of size 3 from $\{1,2,3,4,5,6,7\}$. Say we choose $\{2,3,7\}$. Then we choose a set of size 2 from the remaining positions $\{1,4,5,6\}$. Say we choose $\{4,6\}$. The resulting word is

