There are 5 problems, with a total of 20 parts. Each part is worth 2 points, for a total of 40 points. If two exams are submitted with identical answers then both will receive 0 points.

1. Boolean Algebra. Recall that the Boolean function $\Rightarrow$ is defined by

$$
P \Rightarrow Q:=(\neg P) \vee Q
$$

(a) Draw the truth table for $P \Rightarrow Q$.

| $P$ | $Q$ | $P \Rightarrow Q$ |
| :---: | :---: | :---: |
| $T$ | $T$ | $T$ |
| $T$ | $F$ | $F$ |
| $F$ | $T$ | $T$ |
| $F$ | $F$ | $T$ |

(b) Accurately state De Morgan's Law.

For all Boolean variables $P$ and $Q$ we have

- $\neg(P \vee Q)=(\neg P) \wedge(\neg Q)$
- $\neg(P \wedge Q)=(\neg P) \vee(\neg Q)$
(c) Use De Morgan's Law to prove that $(P \Rightarrow Q)=((\neg Q) \Rightarrow(\neg P))$.

Oops. De Morgan's Law is not actually necessary to prove this. Sorry about that. We have

$$
\begin{aligned}
(\neg Q) \Rightarrow(\neg P) & =\neg(\neg Q) \vee(\neg P) \\
& =Q \vee(\neg P) \\
& =(\neg P) \vee Q \\
& =P \Rightarrow Q .
\end{aligned}
$$

(d) Use a truth table to prove that $(P \Rightarrow Q) \neq(Q \Rightarrow P)$.

Note that $P \Rightarrow Q$ and $Q \Rightarrow P$ differ in the second and third rows:

| $P$ | $Q$ | $P \Rightarrow Q$ | $Q \Rightarrow P$ |
| :---: | :---: | :---: | :---: |
| $T$ | $T$ | $T$ | $T$ |
| $T$ | $F$ | $F$ | $T$ |
| $F$ | $T$ | $T$ | $F$ |
| $F$ | $F$ | $T$ | $T$ |

2. Boolean Functions. A Boolean function with $m$ inputs and $n$ outputs has the form

$$
\varphi:\{T, F\}^{m} \rightarrow\{T, F\}^{n}
$$

(a) Explicitly write down all the elements of the set $\{T, F\}^{3}$.

Recall that $\{T, F\}^{3}=\{T, F\} \times\{T, F\} \times\{T, F\}$ consists of ordered triples of elements from $\{T, F\}$. The elements of the set are:

$$
\begin{array}{lll} 
& (T, T, T) & \\
(T, T, F) & (T, F, T) & (F, T, T) \\
(T, F, F) & (F, T, F) & (F, F, T) \\
& (F, F, F) &
\end{array}
$$

(b) How many elements does the set $\{T, F\}^{n}$ have?

$$
\#\left(\{T, F\}^{n}\right)=(\#\{T, F\})^{n}=2^{n}
$$

(c) How many functions are there from $\{T, F\}^{m}$ to $\{T, F\}^{n}$ ?

The number of functions from $\{T, F,\}^{m}$ to $\{T, F\}^{n}$ is

$$
\#\left(\{T, F\}^{n}\right)^{\#\left(\{T, F\}^{m}\right)}=\left(2^{n}\right)^{\left(2^{m}\right)}
$$

(d) How many Boolean functions are there with 3 inputs and 1 output?

When $m=3$ and $n=1$ the number of functions is

$$
\left(2^{n}\right)^{\left(2^{m}\right)}=\left(2^{1}\right)^{\left(2^{3}\right)}=2^{8}=256
$$

3. Subsets $\leftrightarrow$ Binary Strings. Consider the set $U=\{1,2,3,4,5\}$.
(a) Make a table to display the number of subsets of $U$ with size $k$, for $k=0,1,2,3,4,5$.

| $k$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# subsets of size $k$ | 1 | 5 | 10 | 10 | 5 | 1 |

(b) Explicitly write down all of the subsets of $U$ containing two elements.

$$
\begin{array}{llll}
\{1,2\}, & \{1,3\}, & \{1,4\}, & \{1,5\}, \\
\{2,3\}, & \{2,4\}, & \{2,5\}, & \\
\{3,4\}, & \{3,5\}, & & \\
\{4,5\} & &
\end{array}
$$

(c) Explicitly write down all of the binary strings with two " 1 "s and three " 0 " s .

$$
\begin{array}{lll}
11000, & 10100, & 10010, \quad 10001, \\
01100, & 01010, & 01001, \\
00110, & 00101, & \\
00011 &
\end{array}
$$

(d) Draw lines between your answers to (b) and (c) to demonstrate a natural bijection. The bijection is implied by the way I drew the two sets.

## 4. The Binomial Theorem.

(a) Accurately state the Binomial Theorem.

For any number $a$ and $b$, and for any integer $n \geq 0$ we have

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

(b) Use the Binomial Theorem to prove that $2^{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}$.

Subsitute $a=1$ and $b=1$.
(c) Use the Binomial Theorem to prove that $3^{n}=1\binom{n}{0}+2\binom{n}{1}+4\binom{n}{2}+\cdots+2^{n}\binom{n}{n}$.

Substitute $a=2$ and $b=1$.
(d) Use the Binomial Theorem to prove that $0=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n}\binom{n}{n}$.

Substitute $a=-1$ and $b=1$.

## 5. Binomial Coefficients.

(a) State the formula for $\binom{n}{k}$.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

(b) Use the formula to prove that $k\binom{n}{k}=n\binom{n-1}{k-1}$.

$$
k\binom{n}{k}=k \frac{n!}{k!(n-k)!}=\frac{n!}{(k-1)!(n-k)!}=n \frac{(n-1)!}{(k-1)!(n-k)!}=n\binom{n-1}{k-1}
$$

For parts (c) and (d), suppose you want to choose a committee of $k$ people from a set of $n$ people. One person on the committee will be called the "president".
(c) Explain why the number of ways to do this is $k\binom{n}{k}$.

If we choose the committee first and then the president, there are $\binom{n}{k}$ ways to choose the committee and then $k$ ways to choose the president from the committee. Hence the total number of choices is $\binom{n}{k} k$.
(d) Explain why that the number of ways to do this is $n\binom{n-1}{k-1}$.

It we choose the president first and then the committee, there are $n$ ways to choose the president and then $\binom{n-1}{k-1}$ ways to choose the other $k-1$ members of the committee from the remaining $n-1$ people. Hence the total number of choices is $n\binom{n-1}{k-1}$.

1. Accurately state the Binomial Theorem.

For all integers $n \geq 0$ and for all real numbers $x, y$ we have

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \cdot x^{k} y^{n-k}
$$

2. Draw Pascal's Triangle down the sixth row and use this to find the expansion of $(x+y)^{6}$. Here is Pascal's Triangle:

|  |  |  |  |  |  |  | 1 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  | 1 |  | 1 |  |  |  |  |  |  |
|  |  |  | 1 |  | 2 |  | 1 |  |  |  |  |  |
|  |  |  | 1 |  | 3 |  | 3 |  | 1 |  |  |  |
|  |  | 1 |  | 4 |  | 6 |  | 4 |  | 1 |  |  |
| 1 | 1 |  | 5 |  | 10 |  | 10 |  | 5 |  | 1 |  |
| 1 |  | 6 |  | 15 |  | 20 |  | 15 |  | 6 |  | 1 |

Therefore we have

$$
(x+y)^{6}=1 x^{6}+6 x^{5} y+15 x^{4} y^{2}+20 x^{3} y^{3}+15 x^{2} y^{4}+6 x y^{5}+1 y^{6} .
$$

3. Consider the set $S=\{1,2,3,4,5,6\}$.
(a) How many subsets does $S$ have?

The number of subsets is $2^{\# S}=2^{6}=64$. Alternatively, we can use Pascal's Triangle:

$$
\sum_{k=0}^{6}\binom{6}{k}=1+6+15+20+15+6+1=64 .
$$

(b) How many of these subsets contain an even number of elements? [Note: 0 is even.]

You may remember from class that the number of even subsets is $2^{\# S-1}=2^{5}=32$. Alternatively, we can use Pascal's Triangle:

$$
\binom{6}{0}+\binom{6}{2}+\binom{6}{4}+\binom{6}{6}=1+15+15+1=32
$$

4. 

(a) How many words can be made from $k$ copies of " $a$ " and $n-k$ copies of " $b$ "?

This is the well-known binomial coefficient:

$$
\frac{n!}{k!(n-k)!} .
$$

(b) How many ways are there to arrange the letters " $t, e, n, n, e, s, s, e, e$ " ?

There are 9 letters in total, in which

$$
\begin{aligned}
& " t \text { " appears } 1 \text { time, } \\
& \text { " } e \text { " appears } 4 \text { times, } \\
& \text { " } n \text { " appears } 2 \text { times, and } \\
& \text { " } s \text { " appears } 2 \text { times. }
\end{aligned}
$$

Therefore the number of arrangements is the following multinomial coefficient:

$$
\frac{9!}{1!4!2!2!}=\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{2 \cdot 2}=3,780
$$

Since there's extra white space, here's a free remark:

$$
(t+e+n+s)^{9}=\cdots+3780 \cdot t^{1} e^{4} n^{2} s^{2}+\cdots
$$

1. Accurately state the Division Theorem.

For all integers $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique integers $q, r \in \mathbb{Z}$ satisfying:

$$
\left\{\begin{array}{l}
a=q b+r \\
0 \leq r<|b|
\end{array}\right.
$$

2. Let $a, b \in \mathbb{Z}$ and consider the following statement:

$$
" 2|a \Rightarrow 2|(a b) . "
$$

(a) Translate the statement into English.
"If $a$ is even then $a b$ is even."
or
"If 2 divides $a$ then 2 divides $a b$."
or
"If there exists $k \in \mathbb{Z}$ such that $a=2 k$, then there exists $\ell \in \mathbb{Z}$ such that $a b=2 \ell$."
(b) Prove that the statement is true.

Proof: If $2 \mid a$ then by definition we have $a=2 k$ for some $k \in \mathbb{Z}$. But then we also have

$$
a b=(2 k) b=2(k b),
$$

which by definition says that $2 \mid a b$.
3. Apply the Euclidean Algorithm to compute greatest common divisor of 105 and 91.

$$
\begin{aligned}
\mathbf{1 0 5} & =1 \cdot \mathbf{9 1}+\mathbf{1 4}, & \operatorname{gcd}(105,91) & =\operatorname{gcd}(91,14) \\
\mathbf{9 1} & =6 \cdot \mathbf{1 4}+\mathbf{7}, & & \operatorname{gcd}(14,7) \\
\mathbf{1 4} & =2 \cdot \mathbf{7}+\mathbf{0} . & & =\operatorname{gcd}(7,0)=7 .
\end{aligned}
$$

4. Apply the Extended Euclidean Algorithm to find the complete integer solution $x, y \in \mathbb{Z}$ to the following linear equation:

$$
8 x+5 y=1 .
$$

We make a table of triples $(x, y, z) \in \mathbb{Z}^{3}$ satisfying $8 x+5 y=z$ :

| $x$ | $y$ | $z$ |
| :---: | :---: | :---: |
| 1 | 0 | 8 |
| 0 | 1 | 5 |
| 1 | -1 | 3 |
| -1 | 2 | 2 |
| 2 | -3 | 1 |
| -5 | 8 | 0 |

The second-last row gives us one particular solution:

$$
8(2)+5(-3)=1
$$

And the last row gives us the complete homogeneous solution:

$$
8(-5 k)+5(8 k)=0 \quad \text { for all } k \in \mathbb{Z}
$$

Putting these together gives the complete solution:

$$
8(2-5 k)+5(-3+8 k)=1 \quad \text { for all } k \in \mathbb{Z}
$$

In other words:

$$
\binom{x}{y}=\binom{2}{-3}+k\binom{-5}{8} \quad \text { for all } k \in \mathbb{Z}
$$

## 1. Base $b$ Arithmetic.

Convert the decimal number 111 into binary.
Set $q:=111$ and then repeatedly divide the quotient by 2 :

$$
\begin{aligned}
\mathbf{1 1 1 1} & =\mathbf{5 5} \cdot 2+1 \\
\mathbf{5 5} & =\mathbf{2 7} \cdot 2+1 \\
\mathbf{2 7} & =\mathbf{1 3} \cdot 2+1 \\
\mathbf{1 3} & =\mathbf{6} \cdot 2+1 \\
\mathbf{6} & =\mathbf{3} \cdot 2+0 \\
\mathbf{3} & =\mathbf{1} \cdot 2+1 \\
\mathbf{1} & =\mathbf{0} \cdot 2+1
\end{aligned}
$$

We conclude that $111=(1101111)_{2}$.
2. Induction Again. Fix some number $r \neq 1$.

Use induction to prove that $r^{0}+r^{1}+\cdots+r^{n}=\left(r^{n+1}-1\right) /(r-1)$ for all $n \geq 0$.
Proof. For the base case $n=0$ we observe that

$$
r^{0}=\frac{r^{1}-1}{r-1} \quad \text { is a true statement. }
$$

Now fix some integer $n \geq 0$ and assume for induction that

$$
r^{0}+r^{1}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1} \quad \text { is a true statement. }
$$

Then we also have

$$
\begin{aligned}
r^{0}+r^{1}+\cdots+r^{n+1} & =r^{0}+r^{1}+\cdots+r^{n}+r^{n+1} \\
& =\frac{r^{n+1}-1}{r-1}+r^{n+1} \\
& =\frac{r^{n+1}-1}{r-1}+\frac{r^{n+1}(r-1)}{r-1} \\
& =\frac{r^{n+1}-1}{r-1}+\frac{r^{n+2}-r^{n+1}}{r-1} \\
& =\frac{r^{n+1}-1+r^{n+2}-r^{n+1}}{r-1} \\
& =\frac{r^{n+2}-1}{r-1} .
\end{aligned}
$$

Hence the statement is true for $n+1$.

## 2. Division With Remainder.

(a) Accurately State the Division Theorem.

For all integers $a, b \in \mathbb{Z}$ with $b>0$, there exist unique integers $q, r \in \mathbb{Z}$ such that

$$
\left\{\begin{array}{l}
a=q b+r, \\
0 \leq r<b .
\end{array}\right.
$$

(b) Use the Euclidean algorithm to compute $\operatorname{gcd}(100,23)$.

First we divide 100 by 23 to get sone remainder $r$. Then we replace the pair $(100,23)$ by $(23, r)$ and repeat:

$$
\begin{aligned}
\mathbf{1 0 0} & =4 \cdot \mathbf{2 3} & +\mathbf{8} \\
\mathbf{2 3} & =2 \cdot \mathbf{8} & +\mathbf{7} \\
\mathbf{8} & =1 \cdot \mathbf{7} & +\mathbf{1} \\
\mathbf{7} & =7 \cdot \mathbf{1} & +\mathbf{0}
\end{aligned}
$$

We conclude that $\operatorname{gcd}(100,23)=1$.
(c) Apply your work from (b) to find the continued fraction expansion of 100/23.

The sequence of quotients $(4,2,1,7)$ from part (b) tells us that

$$
\frac{100}{23}=4+\frac{1}{2+\frac{1}{1+\frac{1}{7}}} .
$$

## 1. Counting Words.

(a) Tell me the number of words of length 5 that can be made from the alphabet $\{a, b, c\}$.

$$
\#(\text { words })=\underbrace{3}_{1 \text { st letter }} \times \underbrace{3}_{\text {2nd letter }} \times \underbrace{3}_{3 \text { rd letter }} \times \underbrace{3}_{\text {4th letter }} \times \underbrace{3}_{5 \text { th letter }}=3^{5}=243 .
$$

(b) How many of the words from (a) contain 3 copies of $a, 1$ copy of $b$ and 1 copy of $c$ ?

$$
\binom{5}{3,1,1}=\frac{5!}{3!1!1!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1}=20 .
$$

(c) How many of the words from (a) contain 3 copies of $a$ ? [Hint: You need to add over all possible numbers of $b$ 's and $c$ 's.]

$$
\binom{5}{3,2,0}+\binom{5}{3,1,1}+\binom{5}{3,0,2}=10+20+10=40 .
$$

2. Algebraic vs Counting Proof. For all integers $n \geq 2$ we have the following identity:

$$
n^{2}=2\binom{n}{2}+n
$$

(a) Give an algebraic proof of the identity.

Proof.

$$
2\binom{n}{2}+n=2 \frac{n(n-1)}{2}+n=n(n-1)+n=\left(n^{2}-n\right)+n=n^{2} .
$$

(b) Give a counting proof of the identity. [Hint: Count words of length 2.]

Proof. Let $W$ be the set of words of length 2 from an alphabet of size $n$. On the one hand we have

$$
\# W=n^{2}
$$

On the other hand, let $A \subseteq W$ be the words with 2 different letters and let $B \subseteq W$ be the words with the same letter twice, so $\# W=\# A+\# B$. Then we have

$$
\# A=\underbrace{\binom{n}{2}}_{\text {choose two letters }} \times \underbrace{2}_{\text {put them in order }} \quad \text { and } \quad \# B=\underbrace{n}_{\text {choose one letter }} .
$$

