Math 309	Exam 1	
Fall 2022	Tues Sept 27	

No electronic devices are allowed. There are 5 page and 5 problems. Each problem is worth 6 points, for a total of 30 points.

1. Binomial Coefficients.

(a) Draw Pascal's Triangle down to the sixth row.

(b) Use part (a) to expand the polynomial $(1+x)^6$.

$$(1+x)^6 = 1 + 6x + 15x^2 + 20x^3 + 15x^4 + 6x^5 + x^6$$

(c) Use part (a) to evaluate the following sum:

$$\sum_{k=0}^{4} (3-k) \binom{6}{k}$$

= $(3-0) \binom{6}{0} + (3-1) \binom{6}{1} + (3-2) \binom{6}{2} + (3-3) \binom{6}{3} + (3-4) \binom{6}{4}$
= $3 \cdot 1 + 2 \cdot 6 + 1 \cdot 15 + 0 \cdot 20 - 1 \cdot 15$
= 15

- **2. Venn Diagrams.** Let A, B, C be subsets of the universal set U.
 - (a) Draw a Venn diagram to illustrate the set $A \cap B' \cap C'$.

(b) Draw a Venn diagram to illustrate the set $A \cap B' \cap C$.

(c) Use your diagrams from (a) and (b) to find a simpler expression for the set $(A\cap B'\cap C')\cup (A\cap B'\cap C).$

This is the union of the sets from parts (a) and (b):

From the picture we see that this set is equal to $A \cap B'$.

3. Truth Tables.

(a) Complete the following truth table.

P	Q	$P \lor Q$	$P \wedge Q$	$P \Rightarrow Q$
T	T	T	T	T
T	F	T	F	F
F	Т	T	F	T
F	F	F	F	T

(b) Use a truth table to show that $(P \land Q) \Rightarrow P$ is true for any values of P and Q.

P	Q	$P \wedge Q$	$(P \land Q) \Rightarrow P$
Т	Т	Т	T
Т	F	F	T
F	T	F	T
F	F	F	T

(c) Consider the Boolean function f(P, Q, R) defined by the following truth table:

P	Q	R	f(P,Q,R)
T	T	T	F
T	T	F	F
T	F	T	T
T	F	F	T
F	T	T	F
F	T	F	F
F	F	T	F
F	F	F	F

Write an expression for f(P, Q, R) using the basic operations \lor, \land, \neg .

(Infinitely many correct answers.) There are Ts in the rows corresponding to $P \land \neg Q \land R$ and $P \land \neg Q \land \neg R$, hence the disjunctive normal form is

 $f(P,Q,R) = (P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R).$

Observe that this is the same expression as in Problem 2(c). Hence we also have

 $f(P,Q,R) = P \land \neg Q.$

- 4. Counting Functions. Compute the number of each kind of function.
 - (a) All functions from $\{1, 2\}$ to $\{1, 2, 3\}$.

The number of functions $S \to T$ between finite sets is $\#T^{\#S}$. In our case we have #S = 2 and #T = 3, so the number of possible functions is $3^2 = 9$.

(b) Injective functions from $\{1, 2\}$ to $\{1, 2, 3\}$. [Hint: Draw them.]

In general, the number of injective functions from a set of size k to a set of size n is $n(n-1)\cdots(n-k+1)$, since there are n ways to choose where the first element goes, then n-1 ways to choose where the second element goes, etc. In our case we have k = 2 and n = 3 so the number of injective functions is $3 \cdot 2 = 6$. Picture:

(c) Injective functions from $\{1, 2, 3\}$ to $\{1, 2, 3\}$. [Hint: Draw them.]

This time we have k = 3 and n = 3, so the number of injective functions is $3 \cdot 2 \cdot 1 = 6$. Here is a picture:

Remarks.

- An injective function between two sets of the same size must also be surjective, and hence bijective. The number of bijective functions between two sets of size n is $n(n-1)\cdots 3\cdot 2\cdot 1 = n!$. Such functions are also called *permutations*.
- Do you notice any similarity between the pictures in 4(b) and 4(c)?

5. Induction. Define a sequence c_0, c_1, c_2, \ldots by the following recurrence:

$$c_n = \begin{cases} 1 & n = 0, \\ 2 & n = 1, \\ 5c_{n-1} - 6c_{n-2} & n \ge 2. \end{cases}$$

(a) Compute the first few terms of the sequence and fill in the following table:

(b) Try to guess a formula for the nth term of the sequence.

I guess that $c_n = 2^n$.

(c) Use induction to prove that your formula from part (b) is correct. [Hint: You will need two base cases.]

Proof by Strong Induction. Consider the statement $P(n) = c_n = 2^n$. Since c_n is defined by a second order recurrence, we need to check two base cases. Indeed, we observe that P(0) and P(1) are true. Now fix some arbitrary integer $n \ge 1$ and assume for induction that P(k) = T for all $0 \le k \le n$.¹ That is, we assume that $c_k = 2^k$ for all $0 \le k \le n$. It follows that

$$c_{n+1} = 5c_n - 6c_{n-1}$$
 by definition

$$= 5 \cdot 2^n - 6 \cdot 2^{n-1}$$
 by $P(n)$ and $P(n-1)$

$$= 10 \cdot 2^{n-1} - 6 \cdot 2^{n-1}$$

$$= (10 - 6) \cdot 2^{n-1}$$

$$= 4 \cdot 2^{n-1}$$

$$= 2^{n+1},$$

and hence P(n+1) is also true.

Remark. Where did I come up with this problem? The theory of second order recurrences tells us that the recurrence $c_n = 5c_{n-1} - 6c_{n-2}$ has general solution $c_n = a \cdot 2^n + b \cdot 3^n$ for some constants a and b, because 2 and 3 are the roots of the equation $x^2 = 5x - 6$. The constants are determined by the initial conditions. In this case I chose the initial conditions so that a = 1 and b = 0. This is a nice way to get a tricky-looking recurrence with a simple-looking solution.

¹Actually we will only use P(n) and P(n-1).