No electronic devices are allowed. There are 5 page and 5 problems. Each problem is worth 6 points, for a total of 30 points.

1. Binomial Coefficients.

(a) Draw Pascal's Triangle down to the sixth row.

					1							
				1		1						
				1		2		1				
			1		3		3		1			
		1		4		6		4		1		
1	1	5		10		10		5		1		
1		6		15		20		15		6		1

(b) Use part (a) to expand the polynomial $(1+x)^{6}$.

$$
(1+x)^{6}=1+6 x+15 x^{2}+20 x^{3}+15 x^{4}+6 x^{5}+x^{6}
$$

(c) Use part (a) to evaluate the following sum:

$$
\begin{aligned}
& \sum_{k=0}^{4}(3-k)\binom{6}{k} \\
& =(3-0)\binom{6}{0}+(3-1)\binom{6}{1}+(3-2)\binom{6}{2}+(3-3)\binom{6}{3}+(3-4)\binom{6}{4} \\
& =3 \cdot 1+2 \cdot 6+1 \cdot 15+0 \cdot 20-1 \cdot 15 \\
& =15
\end{aligned}
$$

2. Venn Diagrams. Let A, B, C be subsets of the universal set U.
(a) Draw a Venn diagram to illustrate the set $A \cap B^{\prime} \cap C^{\prime}$.

(b) Draw a Venn diagram to illustrate the set $A \cap B^{\prime} \cap C$.

(c) Use your diagrams from (a) and (b) to find a simpler expression for the set

$$
\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(A \cap B^{\prime} \cap C\right) .
$$

This is the union of the sets from parts (a) and (b):

From the picture we see that this set is equal to $A \cap B^{\prime}$.

3. Truth Tables.

(a) Complete the following truth table.

P	Q	$P \vee Q$	$P \wedge Q$	$P \Rightarrow Q$
T	T	T	T	T
T	F	T	F	F
F	T	T	F	T
F	F	F	F	T

(b) Use a truth table to show that $(P \wedge Q) \Rightarrow P$ is true for any values of P and Q.

P	Q	$P \wedge Q$	$(P \wedge Q) \Rightarrow P$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

(c) Consider the Boolean function $f(P, Q, R)$ defined by the following truth table:

P	Q	R	$f(P, Q, R)$
T	T	T	F
T	T	F	F
T	F	T	T
T	F	F	T
F	T	T	F
F	T	F	F
F	F	T	F
F	F	F	F

Write an expression for $f(P, Q, R)$ using the basic operations \vee, \wedge, \neg.
(Infinitely many correct answers.) There are T s in the rows corresponding to $P \wedge$ $\neg Q \wedge R$ and $P \wedge \neg Q \wedge \neg R$, hence the disjunctive normal form is

$$
f(P, Q, R)=(P \wedge \neg Q \wedge R) \vee(P \wedge \neg Q \wedge \neg R) .
$$

Observe that this is the same expression as in Problem 2(c). Hence we also have

$$
f(P, Q, R)=P \wedge \neg Q .
$$

4. Counting Functions. Compute the number of each kind of function.
(a) All functions from $\{1,2\}$ to $\{1,2,3\}$.

The number of functions $S \rightarrow T$ between finite sets is $\# T^{\# S}$. In our case we have $\# S=2$ and $\# T=3$, so the number of possible functions is $3^{2}=9$.
(b) Injective functions from $\{1,2\}$ to $\{1,2,3\}$. [Hint: Draw them.]

In general, the number of injective functions from a set of size k to a set of size n is $n(n-1) \cdots(n-k+1)$, since there are n ways to choose where the first element goes, then $n-1$ ways to choose where the second element goes, etc. In our case we have $k=2$ and $n=3$ so the number of injective functions is $3 \cdot 2=6$. Picture:

(c) Injective functions from $\{1,2,3\}$ to $\{1,2,3\}$. [Hint: Draw them.]

This time we have $k=3$ and $n=3$, so the number of injective functions is $3 \cdot 2 \cdot 1=6$. Here is a picture:

Remarks.

- An injective function between two sets of the same size must also be surjective, and hence bijective. The number of bijective functions between two sets of size n is $n(n-1) \cdots 3 \cdot 2 \cdot 1=n$!. Such functions are also called permutations.
- Do you notice any similarity between the pictures in $4(\mathrm{~b})$ and $4(\mathrm{c})$?

5. Induction. Define a sequence $c_{0}, c_{1}, c_{2}, \ldots$ by the following recurrence:

$$
c_{n}= \begin{cases}1 & n=0 \\ 2 & n=1 \\ 5 c_{n-1}-6 c_{n-2} & n \geq 2\end{cases}
$$

(a) Compute the first few terms of the sequence and fill in the following table:

n	0	1	2	3	4
c_{n}	1	2	4	8	16

(b) Try to guess a formula for the nth term of the sequence.

I guess that $c_{n}=2^{n}$.
(c) Use induction to prove that your formula from part (b) is correct. [Hint: You will need two base cases.]

Proof by Strong Induction. Consider the statement $P(n)=" c_{n}=2^{n}$ ". Since c_{n} is defined by a second order recurrence, we need to check two base cases. Indeed, we observe that $P(0)$ and $P(1)$ are true. Now fix some arbitrary integer $n \geq 1$ and assume for induction that $P(k)=T$ for all $0 \leq k \leq n \rrbracket^{\dagger}$ That is, we assume that $c_{k}=2^{k}$ for all $0 \leq k \leq n$. It follows that

$$
\begin{array}{rlr}
c_{n+1} & =5 c_{n}-6 c_{n-1} & \text { by definition } \\
& =5 \cdot 2^{n}-6 \cdot 2^{n-1} & \text { by } P(n) \text { and } P(n-1) \\
& =10 \cdot 2^{n-1}-6 \cdot 2^{n-1} & \\
& =(10-6) \cdot 2^{n-1} & \\
& =4 \cdot 2^{n-1} & \\
& =2^{n+1}, &
\end{array}
$$

and hence $P(n+1)$ is also true.

Remark. Where did I come up with this problem? The theory of second order recurrences tells us that the recurrence $c_{n}=5 c_{n-1}-6 c_{n-2}$ has general solution $c_{n}=a \cdot 2^{n}+b \cdot 3^{n}$ for some constants a and b, because 2 and 3 are the roots of the equation $x^{2}=5 x-6$. The constants are determined by the initial conditions. In this case I chose the initial conditions so that $a=1$ and $b=0$. This is a nice way to get a tricky-looking recurrence with a simple-looking solution.

[^0]
[^0]: ${ }^{1}$ Actually we will only use $P(n)$ and $P(n-1)$.

