Let k and n be integers such that $0 \leq k \leq n$. In this case we define the notation

$$
\binom{n}{k}:=\frac{n!}{k!(n-k)!} .
$$

By convention we will say that $\binom{n}{k}:=0$ if $k<0$ or $k>n$.

1. Consider a standard deck of 52 cards. A subset of 5 cards is called a "hand".
(a) How many different hands are there?
(b) How many different hands are there with all red cards?
(c) How many different hands are there that contain 2 red and 3 black cards?

For part (a), there is a set of 52 cards and we want to choose 5 of them. The total number of possible choices is

$$
\binom{52}{5}=\frac{52!}{5!47!}=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 \cdot 47!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 47!}=2598960
$$

That's a lot. For part (b), there is a set of 26 red cards (half the cards are red) and we want to choose 5 of them. The total number of possible choices is

$$
\binom{26}{5}=\frac{26!}{5!21!}=\frac{26 \cdot 25 \cdot 24 \cdot 23 \cdot 22 \cdot 24!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 24!}=65780 .
$$

That's not so many. In fact, that seems kind of rare. If we choose 5 cards at random from a standard deck of 52 cards, what is the probability that we get all red cards? Well, we haven't discussed probability yet; I'll just tell you that the answer is

$$
\frac{65780}{2598960}=\frac{253}{9996} \approx 0.02531
$$

That amounts to a probability of 2.5%. Pretty rare.
For part (c), we want to count the number of different hands that have 2 red cards and 3 black cards. For this purpose we can choose the red and black cards separately and then put them together. There are

$$
\binom{26}{2}=\frac{26!}{2!24!}=\frac{26 \cdot 25 \cdot 24!}{2 \cdot 1 \cdot 24!}=\frac{26 \cdot 25}{2}=325
$$

ways to choose 2 red cards from the full set of 26 red cards, and there are

$$
\binom{26}{3}=\frac{26!}{3!23!}=\frac{26 \cdot 25 \cdot 24 \cdot 23!}{3 \cdot 2 \cdot 1 \cdot 23!}=\frac{26 \cdot 25 \cdot 24}{3 \cdot 2}=2600
$$

ways to choose 3 black cards from the full set of 26 black cards. Since these two choices can be made independently, the total number of different hands we can make with 2 red and 3 black cards is the product of these two numbers:

$$
\binom{26}{2}\binom{26}{3}=325 \cdot 2600=845000 .
$$

If we choose 5 cards at random from a standard deck of 52 , what is the probability that we will get 2 red and 3 black cards? Answer:

$$
\frac{845000}{2598960}=\frac{1625}{4998} \approx 0.32513 .
$$

That amounts to a probability of 32.5%. Pretty common.
[Remark: You can tell that I really want to talk about probability, but l'll postpone that discussion until after the second exam.]
2. Vandermonde Convolution. Suppose you have an urn containing R red balls and G green balls. You reach into the urn and grab n balls. Use this situation to give a counting argument for the following identity:

$$
\sum_{k}\binom{R}{k}\binom{G}{n-k}=\binom{R+G}{n} .
$$

There are a total of $R+G$ balls in the urn. The total number of ways to choose n of them is just $\binom{R+G}{n}$. On the other hand, we could count these choices in a more refined way. Suppose we want to choose k red balls and $n-k$ green balls. The number of ways to choose the red balls is $\binom{R}{k}$ and the number of ways to choose the green balls is $\binom{G}{n-k}$. Thus the total number of choices is the product of these:

$$
\binom{R}{k}\binom{G}{n-k} .
$$

(Compare with Problem 1(c).) Since every collection of n balls has some number of red balls, if we sum the numbers $\binom{R}{k}\binom{G}{n-k}$ over all possible values of k we will recover the total number of choices that we had before:

$$
\binom{R+G}{n}=\binom{R}{0}\binom{G}{n}+\binom{R}{1}\binom{G}{n-1}+\cdots+\binom{R}{n-1}\binom{G}{1}+\binom{R}{n}\binom{G}{0} .
$$

[Remark: Some of these terms might be zero if $R<n$ or $G<n$.]
The important thing about this problem is that you believe the result. For this purpose you should probably do a few examples to convince yourself. You should note, however, that examples are not a substitute for a general argument. Here's an example with $R=2, G=3$, and $n=3$:

$$
\begin{aligned}
\binom{5}{2} & =\binom{2}{0}\binom{3}{3}+\binom{2}{1}\binom{3}{2}+\binom{2}{2}\binom{3}{1}+\binom{2}{3}\binom{3}{0} \\
10 & =1 \cdot 1+2 \cdot 3+1 \cdot 3+0 \cdot 1 \\
10 & =1+6+3+0
\end{aligned}
$$

You should draw the balls $\left\{r_{1}, r_{2}, g_{1}, g_{2}, g_{3}\right\}$ in an urn and then draw all the sets of three balls, organized by how many red balls each set contains.
3. Use the formula to verify that for relevant values of k and n we have

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

This is just a matter of adding fractions by finding a common denominator, and then hoping that we get the right answer.

$$
\begin{aligned}
\binom{n-1}{k}+\binom{n-1}{k-1} & =\frac{(n-1)!}{k!(n-1-k)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-1)!}{k!(n-k-1)!}+\frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-k)}{(n-k)} \cdot \frac{(n-1)!}{k!(n-k-1)!}+\frac{k}{k} \cdot \frac{(n-1)!}{(k-1)!(n-k)!} \\
& =\frac{(n-k)(n-1)!}{k!(n-k)!}+\frac{k(n-1)!}{k!(n-k)!} \\
& =\frac{(n-k)(n-1)!+k(n-1)!}{k!(n-k)!} \\
& =\frac{[(n-k)+k)(n-1)!}{k!(n-k)!} \\
& =\frac{n(n-1)!}{k!(n-k)!} \\
& =\frac{n!}{k!(n-k)!} \\
& =\binom{n}{k} .
\end{aligned}
$$

That's all there is to it.
That's a perfectly good proof, but for me it doesn't really answer the question "why?".
4. Give a counting argument for the identity in Problem 3. [Hint: Consider the set of binary strings of length n containing k " 1 "s. How many are there? Now break this set into two subsets: the strings with leftmost symbol " 0 " and the strings with leftmost symbol " 1 ". How many are there of each kind?]

Let S be the set of binary strings of length n containing k " 1 "s and recall that $\# S=\binom{n}{k}$. We can divide this set into two subsets S_{0} and S_{1}, where S_{0} is the set of binary strings of length n with containing k " 1 "s and such that the leftmost bit is " 0 ", and S_{1} is the set of binary strings of length n containing k " 1 "s and such that the leftmost bit is " 1 ". Since the sets S_{0} and S_{1} are disjoint and exhaust S, we know that

$$
\binom{n}{k}=\# S=\# S_{0}+\# S_{1} .
$$

[We haven't officially discussed disjoint unions, but I think the equation above is intuitively clear.] Now I claim that $\# S_{0}=\binom{n-1}{k}$ and $\# S_{1}=\binom{n-1}{k-1}$. Indeed, if the leftmost bit is " 0 ", then the remaining symbols form a binary string of length $n-1$ containing k " 1 "s, and we know that there are $\binom{n-1}{k}$ of these. Similarly, if the leftmost bit is " 1 ", then the remaining symbols form a binary string of length $n-1$ containing $k-1$ " 1 "s, and we know that there are $\binom{n-1}{k-1}$ of these. We conclude that

$$
\binom{n}{k}=\# S=\# S_{0}+\# S_{1}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

Again, an example is no substitute for a general argument, but you should always compute an example or two until you feel comfortable with the general argument. Here are the binary strings of length 5 containing 3 " 1 "s.

11100	01110
11010	01101
11001	01011
10110	00111
10101	
10011	

Note that there are $\binom{5}{3}=10$ of these, as expected. The strings on the left have leftmost bit " 1 ". Note that there are $\binom{4}{2}=6$ of these because after stripping away the leftmost " 1 " we are left with the binary strings of length 4 containing 2 " 1 "s:

$$
1100, \quad 1010, \quad 1001, \quad 0110, \quad 0101, \quad 0011 .
$$

The strings on the right have leftmost bit " 0 ". Note that there are $\binom{4}{3}=4$ of these because after stripping away the leftmost " 0 " we are left with the binary strings of length 4 containin 3 "0" s:

$$
\text { 1110, 1101, 1011, } 0111 .
$$

This explains why $\binom{5}{3}=\binom{4}{3}+\binom{4}{2}$.
5. Trinomial Coefficients. Consider integers $i, j, k \geq 0$ such that $i+j+k=n$. Let N be the number of different words of length n containing i " a " s, j " b " s , and k "c"s. Explain why

$$
n!=N \cdot i!\cdot j!\cdot k!
$$

[Hint: Count the permutations of the symbols $a_{1}, \ldots, a_{i}, b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{j}$ in two different ways.] Use the result to compute the number of different words (not necessarily English words) that can be made from the letters

$$
b, a, n, a, n, a .
$$

Let $i, j, k \geq 0$ be nonnegative integers such that $i+j+k=n$, and let N be the number of words of length n containing i "a"s, j " b " s , and k " c "s. We want to find a formula for the number N. To do this we will instead solve a slightly different problem: We will count the number of words formed from the labeled letters

$$
a_{1}, \ldots, a_{i}, b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{j}
$$

in two different ways. On one hand, these are just n different symbols, so the number words they can form is $n!$. On the other hand, we could form such a word by first choosing an unlabeled word in N ways, and then placing labels on the "a"s in i ! ways, on the "b"s in j ! ways, and on the "c"s in k ! ways. Since we have counted the same objects twice, we get an equality

$$
n!=N \cdot i!\cdot j!\cdot k!
$$

which we can solve to obtain

$$
N=\frac{n!}{i!j!k!}
$$

So how many words can you make using all of the letters: b, a, n, a, n, a. The answer is

$$
\frac{6!}{1!2!3!}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1 \cdot 2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=\frac{6 \cdot 5 \cdot 4}{2}=60 .
$$

