Let k and n be integers such that $0 \leq k \leq n$. In this case we define the notation

$$
\binom{n}{k}:=\frac{n!}{k!(n-k)!} .
$$

By convention we will say that $\binom{n}{k}:=0$ if $k<0$ or $k>n$.

1. Consider a standard deck of 52 cards. A subset of 5 cards is called a "hand".
(a) How many different hands are there?
(b) How many different hands are there with all red cards?
(c) How many different hands are there that contain 2 red and 3 black cards?
2. Vandermonde Convolution. Suppose you have an urn containing R red balls and G green balls. You reach into the urn and grab n balls. Use this situation to give a counting argument for the following identity:

$$
\sum_{k}\binom{R}{k}\binom{G}{n-k}=\binom{R+G}{n}
$$

3. Use the formula to verify that for relevant values of k and n we have

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} .
$$

4. Give a counting argument for the identity in Problem 3. [Hint: Consider the set of binary strings of length n containing k " 1 "s. How many are there? Now break this set into two subsets: the strings with leftmost symbol " 0 " and the strings with leftmost symbol " 1 ". How many are there of each kind?]
5. Trinomial Coefficients. Consider integers $i, j, k \geq 0$ such that $i+j+k=n$. Let N be the number of different words of length n containing i " a " s, j " b " s , and k "c"s. Explain why

$$
n!=N \cdot i!\cdot j!\cdot k!
$$

[Hint: Count the permutations of the symbols $a_{1}, \ldots, a_{i}, b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{j}$ in two different ways.] Use the result to compute the number of different words (not necessarily English words) that can be made from the letters

$$
b, a, n, a, n, a .
$$

