On this homework you will meet some new Boolean functions.

1. Given $P, Q \in \{T, F\}$ we define the **Boolean sum** (also called "exclusive OR"):

$$P \oplus Q := (P \land \neg Q) \lor (\neg P \land Q).$$

- (a) Draw the truth table for $P \oplus Q$.
- (b) Use truth tables to prove that for all $P, Q, R \in \{T, F\}$ we have

$$P \land (Q \oplus R) = (P \land Q) \oplus (P \land R).$$

[It is fair to think of \oplus as "addition" and \wedge as "multiplication".]

For part (a) we have the following truth table.

j	Р	Q	$\neg P$	$\neg Q$	$P \wedge \neg Q$	$\neg P \wedge Q$	$(P \land \neg Q) \lor (\neg P \land Q)$
	Γ	T	F	F	F	F	F
2	Γ	F	F	T	T	F	T
j	F	T	T	F	F	T	T
j	F	F	T	T	F	F	F

The last column represents $P \oplus Q$. We could also have jumped right to the answer because $P \oplus Q$ was given to us in disjunctive normal form (which is equivalent to just describing the truth table).

For part (b) we have the following truth table.

P	Q	R	$Q\oplus R$	$P \wedge (Q \oplus R)$	$P \wedge Q$	$P \wedge R$	$(P \land Q) \oplus (P \land R)$
T	T	T	F	F	T	T	F
T	T	F	T	T	T	F	T
T	F	T	T	T	F	T	T
T	F	F	F	F	F	F	F
F	T	T	F	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F	F	F	F	F	F	F	F

Note that the fifth and eighth columns are the same.

[There is another way to think about part (b) if you know something about modular arithmetic. If we let T = 1 and F = 0 then the operation \wedge is the same as "multiplication mod 2" and the operation \oplus is the same as "addition mod 2".

\wedge	1	0		\oplus	1	0
1	1	0	-	1	0	1
0	0	0		0	1	0

In this language the identity $P \land (Q \oplus R) = (P \land Q) \oplus (P \land R)$ is just the usual distributivity of multiplication over addition.]

2. Given $P, Q \in \{T, F\}$ we define the function $P \Rightarrow Q$ with the following table:

$$\begin{array}{c|ccc} P & Q & P \Rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

We call this **logical implication** and we read $P \Rightarrow Q$ as "if P then Q" or "P implies Q".

- (a) Draw the truth table for $P \neq Q := \neg(P \Rightarrow Q)$.
- (b) Compute the disjunctive normal form of $P \neq Q$.
- (c) Use part (b) to find a simple formula for $P \Rightarrow Q$. [Hint: De Morgan's Law.]

For part (a) we have the following truth table.

For part (b) we note that the disjunctive normal form of $P \not\Rightarrow Q$ is just

$$P \not\Rightarrow Q = P \land \neg Q$$

where the term $P \wedge \neg Q$ corresponds to the single T in the truth table for $P \neg \Rightarrow Q$.

For part (c), let me first note that the disjunctive normal form of $P \Rightarrow Q$ is

$$P \Rightarrow Q = (P \land Q) \lor (\neg P \land Q) \lor (\neg P \land \neg Q),$$

which is not very simple. We can get a nicer formula if we start with our formula for $P \neq Q$ and then apply de Morgan's law:

$$P \Rightarrow Q = \neg (P \neq Q)$$
$$= \neg (P \land \neg Q)$$
$$= \neg P \lor \neg \neg Q$$
$$= \neg P \lor Q.$$

That's better.

3. For all $P, Q \in \{T, F\}$ we define the function $P \Leftrightarrow Q$ by

$$P \Leftrightarrow Q := (P \Rightarrow Q) \land (Q \Rightarrow P).$$

We call this function **logical equivalence** and we read $P \Leftrightarrow Q$ as "P if and only if Q".

- (a) Compute the disjunctive normal form of $P \Leftrightarrow Q$.
- (b) Show that $P \not\Leftrightarrow Q := \neg(P \Leftrightarrow Q)$ is the same as $P \oplus Q$.

For part (a) we first compute the truth table of $P \Leftrightarrow Q$ as follows.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

(Observe that \Leftrightarrow acts just like an equals sign; it returns T if the arguments are the same and it returns F if the arguments are different.) Now we can read the disjunctive normal form directly from the truth table:

$$P \Leftrightarrow Q = (P \land Q) \lor (\neg P \land \neg Q).$$

There is not much to do for part (b). We just draw the truth table and observe that the fourth and fifth columns are the same.

P	Q	$P \Leftrightarrow Q$	$P \not\Leftrightarrow Q$	$P\oplus Q$
T	T	T	F	F
T	F	F	T	T
F	T	F	T	T
F	F	T	F	F

Now we have three different ways to think about the operation \oplus . It can be a Boolean analogue of "addition", it can be the "exclusive or" logical operation, and we can also think of it as "not equal to".

4. Let *B* be a Boolean algebra. For all $P, Q \in B$ we define the "Sheffer stroke"

$$P \uparrow Q := \neg (P \land Q).$$

Use the properties of Boolean algebra from the handout to prove the following formulas. Don't use truth tables! These formulas can be used to express **any** function $\{T, F\}^n \to \{T, F\}$ in terms of \uparrow alone.

(a)
$$\neg P = P \uparrow P$$

(b) $P \lor Q = (P \uparrow P) \uparrow (Q \uparrow Q)$
(c) $P \land Q = (P \uparrow Q) \uparrow (P \uparrow Q)$

In this problem we will avoid truth tables and instead use synthetic Boolean algebra. I will write each part as a two-line proof, quoting axioms and theorems using their number from the handout. For part (a) we have

$$P \uparrow P = \neg (P \land P) \qquad \text{by definition} \\ = \neg P. \tag{6}$$

For part (b) we have

$$(P \uparrow P) \uparrow (Q \uparrow Q) = \neg P \uparrow \neg Q \qquad \text{by part (a)}$$
$$= \neg (\neg P \land \neg Q) \qquad \text{by definition}$$
$$= \neg \neg P \lor \neg \neg Q \qquad (12)$$
$$= P \lor Q. \qquad ?$$

OOPS. We never proved that $\neg \neg P = P$ did we? Let's prove it now. We will use Theorem 11 (Uniqueness of Complements). To do this we note that

$$\neg P \land P = P \land \neg P \tag{2}$$

$$=0, (4)$$

and

$$\neg P \lor P = P \lor \neg P \tag{2}$$

$$=1,$$
 (4)

Then by (11) we conclude that P must equal the complement of $\neg P$. In other words, $P = \neg \neg P$. Let's call this Theorem (13). This completes our proof of part (b). [Don't worry if you didn't fill in this last detail. You won't lose any points for that.]

Finally, for part (c) we have

$$(P \uparrow Q) \uparrow (P \uparrow Q) = \neg ((P \uparrow Q) \land (P \uparrow Q)) \qquad \text{by definition} \\ = \neg (P \uparrow Q) \qquad (6) \\ = \neg (\neg (P \land Q)) \qquad \text{by definition} \\ = P \land Q \qquad (13).$$

That's it.

[The results of Problem 4 prove that the Sheffer stroke is "universal". This means that we can express \mathbf{any} Boolean function using just the Sheffer stroke. For example, consider the function

$$\varphi(P,Q,R) = (P \land \neg Q) \lor R.$$

Then we have

$$\begin{split} \varphi(P,Q,R) &= (P \land \neg Q) \lor R \\ &= (P \land (Q \uparrow Q)) \lor R \\ &= ((P \land (Q \uparrow Q)) \uparrow (P \land (Q \uparrow Q)) \uparrow (R \uparrow R) \\ &= (((P \uparrow (Q \uparrow Q)) \uparrow (P \uparrow (Q \uparrow Q))) \uparrow ((P \uparrow (Q \uparrow Q))) \uparrow (P \uparrow (Q \uparrow Q))) \uparrow (R \uparrow R) \end{split}$$

Obviously this is not a good language for humans to use, but computers are quite happy with it. In fact, this is the language that is used inside of flash memory drives.]