On this homework you will meet some new Boolean functions.

1. Given $P, Q \in\{T, F\}$ we define the Boolean sum (also called "exclusive OR"):

$$
P \oplus Q:=(P \wedge \neg Q) \vee(\neg P \wedge Q)
$$

(a) Draw the truth table for $P \oplus Q$.
(b) Use truth tables to prove that for all $P, Q, R \in\{T, F\}$ we have

$$
P \wedge(Q \oplus R)=(P \wedge Q) \oplus(P \wedge R) .
$$

[It is fair to think of \oplus as "addition" and \wedge as "multiplication".]
For part (a) we have the following truth table.

| P | Q | $\neg P$ | $\neg Q$ | $P \wedge \neg Q$ | $\neg P \wedge Q$ | $(P \wedge \neg Q) \vee(\neg P \wedge Q)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | F | F | F | F | F |
| T | F | F | T | T | F | T |
| F | T | T | F | F | T | T |
| F | F | T | T | F | F | F |

The last column represents $P \oplus Q$. We could also have jumped right to the answer because $P \oplus Q$ was given to us in disjunctive normal form (which is equivalent to just describing the truth table).

For part (b) we have the following truth table.

| P | Q | R | $Q \oplus R$ | $P \wedge(Q \oplus R)$ | $P \wedge Q$ | $P \wedge R$ | $(P \wedge Q) \oplus(P \wedge R)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | T | T | F |
| T | T | F | T | T | T | F | T |
| T | F | T | T | T | F | T | T |
| T | F |
| F | T | T | F | F | F | F | F |
| F | T | F | T | F | F | F | F |
| F | F | T | T | F | F | F | F |
| F |

Note that the fifth and eighth columns are the same.
[There is another way to think about part (b) if you know something about modular arithmetic. If we let $T=1$ and $F=0$ then the operation \wedge is the same as "multiplication mod 2 " and the operation \oplus is the same as "addition $\bmod 2$ ".

$$
\begin{array}{c|ccc|cc}
\wedge & 1 & 0 \\
\hline 1 & 1 & 0 \\
0 & 0 & 0 & \oplus & 1 & 0 \\
\hline 1 & 0 & 1 \\
0 & 1 & 0
\end{array}
$$

In this language the identity $P \wedge(Q \oplus R)=(P \wedge Q) \oplus(P \wedge R)$ is just the usual distributivity of multiplication over addition.]
2. Given $P, Q \in\{T, F\}$ we define the function $P \Rightarrow Q$ with the following table:

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

We call this logical implication and we read $P \Rightarrow Q$ as "if P then Q " or " P implies Q ".
(a) Draw the truth table for $P \nRightarrow Q:=\neg(P \Rightarrow Q)$.
(b) Compute the disjunctive normal form of $P \nRightarrow Q$.
(c) Use part (b) to find a simple formula for $P \Rightarrow Q$. [Hint: De Morgan's Law.]

For part (a) we have the following truth table.

P	Q	$P \Rightarrow Q$	$P \nRightarrow Q$
T	T	T	F
T	F	F	T
F	T	T	F
F	F	T	F

For part (b) we note that the disjunctive normal form of $P \nRightarrow Q$ is just

$$
P \nRightarrow Q=P \wedge \neg Q
$$

where the term $P \wedge \neg Q$ corresponds to the single T in the truth table for $P \neg \Rightarrow Q$.
For part (c), let me first note that the disjunctive normal form of $P \Rightarrow Q$ is

$$
P \Rightarrow Q=(P \wedge Q) \vee(\neg P \wedge Q) \vee(\neg P \wedge \neg Q)
$$

which is not very simple. We can get a nicer formula if we start with our formula for $P \nRightarrow Q$ and then apply de Morgan's law:

$$
\begin{aligned}
P \Rightarrow Q & =\neg(P \nRightarrow Q) \\
& =\neg(P \wedge \neg Q) \\
& =\neg P \vee \neg \neg Q \\
& =\neg P \vee Q .
\end{aligned}
$$

That's better.
3. For all $P, Q \in\{T, F\}$ we define the function $P \Leftrightarrow Q$ by

$$
P \Leftrightarrow Q:=(P \Rightarrow Q) \wedge(Q \Rightarrow P)
$$

We call this function logical equivalence and we read $P \Leftrightarrow Q$ as " P if and only if Q ".
(a) Compute the disjunctive normal form of $P \Leftrightarrow Q$.
(b) Show that $P \nLeftarrow Q:=\neg(P \Leftrightarrow Q)$ is the same as $P \oplus Q$.

For part (a) we first compute the truth table of $P \Leftrightarrow Q$ as follows.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q) \wedge(Q \Rightarrow P)$
T	T	T	T	T
T	F	F	T	F
F	T	T	F	F
F	F	T	T	T

(Observe that \Leftrightarrow acts just like an equals sign; it returns T if the arguments are the same and it returns F if the arguments are different.) Now we can read the disjunctive normal form directly from the truth table:

$$
P \Leftrightarrow Q=(P \wedge Q) \vee(\neg P \wedge \neg Q)
$$

There is not much to do for part (b). We just draw the truth table and observe that the fourth and fifth columns are the same.

P	Q	$P \Leftrightarrow Q$	$P \nLeftarrow Q$	$P \oplus Q$
T	T	T	F	F
T	F	F	T	T
F	T	F	T	T
F	F	T	F	F

Now we have three different ways to think about the operation \oplus. It can be a Boolean analogue of "addition", it can be the "exclusive or" logical operation, and we can also think of it as "not equal to".
4. Let B be a Boolean algebra. For all $P, Q \in B$ we define the "Sheffer stroke"

$$
P \uparrow Q:=\neg(P \wedge Q)
$$

Use the properties of Boolean algebra from the handout to prove the following formulas. Don't use truth tables! These formulas can be used to express any function $\{T, F\}^{n} \rightarrow\{T, F\}$ in terms of \uparrow alone.
(a) $\neg P=P \uparrow P$
(b) $P \vee Q=(P \uparrow P) \uparrow(Q \uparrow Q)$
(c) $P \wedge Q=(P \uparrow Q) \uparrow(P \uparrow Q)$

In this problem we will avoid truth tables and instead use synthetic Boolean algebra. I will write each part as a two-line proof, quoting axioms and theorems using their number from the handout. For part (a) we have

$$
\begin{array}{rlr}
P \uparrow P & =\neg(P \wedge P) \quad \text { by definition } \\
& =\neg P . \tag{6}
\end{array}
$$

For part (b) we have

$$
\begin{aligned}
(P \uparrow P) \uparrow(Q \uparrow Q) & =\neg P \uparrow \neg Q \\
& =\neg(\neg P \wedge \neg Q) \\
& =\neg \neg P \vee \neg \neg Q \\
& =P \vee Q .
\end{aligned}
$$

by part (a)
by definition

OOPS. We never proved that $\neg \neg P=P$ did we? Let's prove it now. We will use Theorem 11 (Uniqueness of Complements). To do this we note that

$$
\begin{align*}
\neg P \wedge P & =P \wedge \neg P \tag{2}\\
& =0, \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
\neg P \vee P & =P \vee \neg P \tag{2}\\
& =1, \tag{4}
\end{align*}
$$

Then by (11) we conclude that P must equal the complement of $\neg P$. In other words, $P=\neg \neg P$. Let's call this Theorem (13). This completes our proof of part (b). [Don't worry if you didn't fill in this last detail. You won't lose any points for that.]

Finally, for part (c) we have

$$
\begin{array}{rlrl}
(P \uparrow Q) \uparrow(P \uparrow Q) & =\neg((P \uparrow Q) \wedge(P \uparrow Q)) & & \text { by definition } \\
& =\neg(P \uparrow Q) & & (6) \tag{6}\\
& =\neg(\neg(P \wedge Q)) & & \text { by definition } \\
& =P \wedge Q &
\end{array}
$$

That's it.
[The results of Problem 4 prove that the Sheffer stroke is "universal". This means that we can express any Boolean function using just the Sheffer stroke. For example, consider the function

$$
\varphi(P, Q, R)=(P \wedge \neg Q) \vee R
$$

Then we have

$$
\begin{aligned}
\varphi(P, Q, R) & =(P \wedge \neg Q) \vee R \\
& =(P \wedge(Q \uparrow Q)) \vee R \\
& =((P \wedge(Q \uparrow Q)) \uparrow(P \wedge(Q \uparrow Q)) \uparrow(R \uparrow R) \\
& =(((P \uparrow(Q \uparrow Q)) \uparrow(P \uparrow(Q \uparrow Q))) \uparrow((P \uparrow(Q \uparrow Q)) \uparrow(P \uparrow(Q \uparrow Q))) \uparrow(R \uparrow R)
\end{aligned}
$$

Obviously this is not a good language for humans to use, but computers are quite happy with it. In fact, this is the language that is used inside of flash memory drives.]

