
Math 309 Fall 2014
Homework 3 Solutions Drew Armstrong

On this homework you will meet some new Boolean functions.

1. Given P,Q ∈ {T, F} we define the Boolean sum (also called “exclusive OR”):

P ⊕Q := (P ∧ ¬Q) ∨ (¬P ∧Q).

(a) Draw the truth table for P ⊕Q.
(b) Use truth tables to prove that for all P,Q,R ∈ {T, F} we have

P ∧ (Q⊕R) = (P ∧Q)⊕ (P ∧R).

[It is fair to think of ⊕ as “addition” and ∧ as “multiplication”.]

For part (a) we have the following truth table.

P Q ¬P ¬Q P ∧ ¬Q ¬P ∧Q (P ∧ ¬Q) ∨ (¬P ∧Q)
T T F F F F F
T F F T T F T
F T T F F T T
F F T T F F F

The last column represents P ⊕ Q. We could also have jumped right to the answer because
P ⊕Q was given to us in disjunctive normal form (which is equivalent to just describing the
truth table).

For part (b) we have the following truth table.

P Q R Q⊕R P ∧ (Q⊕R) P ∧Q P ∧R (P ∧Q)⊕ (P ∧R)
T T T F F T T F
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T F F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

Note that the fifth and eighth columns are the same.

[There is another way to think about part (b) if you know something about modular arithmetic.
If we let T = 1 and F = 0 then the operation ∧ is the same as “multiplication mod 2” and the
operation ⊕ is the same as “addition mod 2”.

∧ 1 0
1 1 0
0 0 0

⊕ 1 0
1 0 1
0 1 0

In this language the identity P ∧ (Q⊕R) = (P ∧Q)⊕ (P ∧R) is just the usual distributivity of
multiplication over addition.]



2. Given P,Q ∈ {T, F} we define the function P ⇒ Q with the following table:

P Q P ⇒ Q
T T T
T F F
F T T
F F T

We call this logical implication and we read P ⇒ Q as “ if P then Q ” or “P implies Q ”.

(a) Draw the truth table for P 6⇒ Q := ¬(P ⇒ Q).
(b) Compute the disjunctive normal form of P 6⇒ Q.
(c) Use part (b) to find a simple formula for P ⇒ Q. [Hint: De Morgan’s Law.]

For part (a) we have the following truth table.

P Q P ⇒ Q P 6⇒ Q
T T T F
T F F T
F T T F
F F T F

For part (b) we note that the disjunctive normal form of P 6⇒ Q is just

P 6⇒ Q = P ∧ ¬Q
where the term P ∧ ¬Q corresponds to the single T in the truth table for P¬ ⇒ Q.

For part (c), let me first note that the disjunctive normal form of P ⇒ Q is

P ⇒ Q = (P ∧Q) ∨ (¬P ∧Q) ∨ (¬P ∧ ¬Q),

which is not very simple. We can get a nicer formula if we start with our formula for P 6⇒ Q
and then apply de Morgan’s law:

P ⇒ Q = ¬(P 6⇒ Q)

= ¬(P ∧ ¬Q)

= ¬P ∨ ¬¬Q
= ¬P ∨Q.

That’s better.

3. For all P,Q ∈ {T, F} we define the function P ⇔ Q by

P ⇔ Q := (P ⇒ Q) ∧ (Q⇒ P ).

We call this function logical equivalence and we read P ⇔ Q as “P if and only if Q ”.

(a) Compute the disjunctive normal form of P ⇔ Q.
(b) Show that P 6⇔ Q := ¬(P ⇔ Q) is the same as P ⊕Q.

For part (a) we first compute the truth table of P ⇔ Q as follows.

P Q P ⇒ Q Q⇒ P (P ⇒ Q) ∧ (Q⇒ P )
T T T T T
T F F T F
F T T F F
F F T T T



(Observe that ⇔ acts just like an equals sign; it returns T if the arguments are the same and
it returns F if the arguments are different.) Now we can read the disjunctive normal form
directly from the truth table:

P ⇔ Q = (P ∧Q) ∨ (¬P ∧ ¬Q).

There is not much to do for part (b). We just draw the truth table and observe that the
fourth and fifth columns are the same.

P Q P ⇔ Q P 6⇔ Q P ⊕Q
T T T F F
T F F T T
F T F T T
F F T F F

Now we have three different ways to think about the operation ⊕. It can be a Boolean analogue
of “addition”, it can be the “exclusive or” logical operation, and we can also think of it as
“not equal to”.

4. Let B be a Boolean algebra. For all P,Q ∈ B we define the “Sheffer stroke”

P ↑ Q := ¬(P ∧Q).

Use the properties of Boolean algebra from the handout to prove the following formulas. Don’t
use truth tables! These formulas can be used to express any function {T, F}n → {T, F} in
terms of ↑ alone.

(a) ¬P = P ↑ P
(b) P ∨Q = (P ↑ P ) ↑ (Q ↑ Q)
(c) P ∧Q = (P ↑ Q) ↑ (P ↑ Q)

In this problem we will avoid truth tables and instead use synthetic Boolean algebra. I will
write each part as a two-line proof, quoting axioms and theorems using their number from the
handout. For part (a) we have

P ↑ P = ¬(P ∧ P ) by definition

= ¬P. (6)

For part (b) we have

(P ↑ P ) ↑ (Q ↑ Q) = ¬P ↑ ¬Q by part (a)

= ¬(¬P ∧ ¬Q) by definition

= ¬¬P ∨ ¬¬Q (12)

= P ∨Q. ?

OOPS. We never proved that ¬¬P = P did we? Let’s prove it now. We will use Theorem
11 (Uniqueness of Complements). To do this we note that

¬P ∧ P = P ∧ ¬P (2)

= 0, (4)

and

¬P ∨ P = P ∨ ¬P (2)

= 1, (4)



Then by (11) we conclude that P must equal the complement of ¬P . In other words, P = ¬¬P .
Let’s call this Theorem (13). This completes our proof of part (b). [Don’t worry if you didn’t
fill in this last detail. You won’t lose any points for that.]

Finally, for part (c) we have

(P ↑ Q) ↑ (P ↑ Q) = ¬((P ↑ Q) ∧ (P ↑ Q)) by definition

= ¬(P ↑ Q) (6)

= ¬(¬(P ∧Q)) by definition

= P ∧Q (13).

That’s it.

[The results of Problem 4 prove that the Sheffer stroke is “universal”. This means that we can
express any Boolean function using just the Sheffer stroke. For example, consider the function

ϕ(P,Q,R) = (P ∧ ¬Q) ∨R.

Then we have

ϕ(P,Q,R) = (P ∧ ¬Q) ∨R

= (P ∧ (Q ↑ Q)) ∨R

= ((P ∧ (Q ↑ Q)) ↑ (P ∧ (Q ↑ Q)) ↑ (R ↑ R)

= (((P ↑ (Q ↑ Q)) ↑ (P ↑ (Q ↑ Q))) ↑ ((P ↑ (Q ↑ Q)) ↑ (P ↑ (Q ↑ Q))) ↑ (R ↑ R)

Obviously this is not a good language for humans to use, but computers are quite happy with it.
In fact, this is the language that is used inside of flash memory drives.]


