Math 309 Fall 2014
Homework 3 Solutions Drew Armstrong

On this homework you will meet some new Boolean functions.

1. Given P,Q € {T, F'} we define the Boolean sum (also called “exclusive OR”):
PeQ :=(PAN-Q)V (=P AQ).

(a) Draw the truth table for P @& Q.
(b) Use truth tables to prove that for all P,Q, R € {T, F'} we have

PA(Q@®R)=(PAQ)D (PAR).

It is fair to think of @& as “addition” and A as “multiplication”.]

For part (a) we have the following truth table.

P Q@ -P -Q PAN-Q —-PANQ (PAN-Q)V(-PAQ)
T T F F F F F
T F F T T F T
F T T F F T T
F F T T F F F

The last column represents P @ ). We could also have jumped right to the answer because
P @ @ was given to us in disjunctive normal form (which is equivalent to just describing the
truth table).

For part (b) we have the following truth table.

P Q@ R Q&R PAN(Q@®R) PNQ PAR (PANQ)®(PAR)
T T T F F T T F
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T F F F F F
FTF T F F F F
F FT T F F F F
F F F F F F F F

Note that the fifth and eighth columns are the same.

[There is another way to think about part (b) if you know something about modular arithmetic.
If we let T =1 and F' = 0 then the operation A is the same as “multiplication mod 2" and the
operation @ is the same as “addition mod 2".

Al O ©|1 0
111 0 110 1
0({0 O 011 0

In this language the identity P A (Q @ R) = (P A Q) @ (P A R) is just the usual distributivity of
multiplication over addition.]



2. Given P,Q € {T, F'} we define the function P = @ with the following table:

P Q|P=Q
T T T
T F F
F T T
F F T

We call this logical implication and we read P = @ as “if P then Q7 or “P implies Q”.

(a) Draw the truth table for P # @ = =(P = Q).
(b) Compute the disjunctive normal form of P # Q).
(c) Use part (b) to find a simple formula for P = @. [Hint: De Morgan’s Law.]

For part (a) we have the following truth table.
P Q P=>Q P#Q
T

T T F
T F F T
F T T F
F F T F

For part (b) we note that the disjunctive normal form of P # @ is just

P#Q=PN-Q

where the term P A =@ corresponds to the single T in the truth table for P- = Q.
For part (c), let me first note that the disjunctive normal form of P = @ is

P=Q=(PAQ)V(-PAQ)V (=P A-Q),

which is not very simple. We can get a nicer formula if we start with our formula for P # Q)
and then apply de Morgan’s law:

P=Q=~(P#Q)
—~(PA-Q)
=-=PV-Q
=-PVAQ.
That’s better.

3. For all P,Q € {T, F'} we define the function P < @ by
Pe@Q:=(P=Q) N(Q=P).
We call this function logical equivalence and we read P < @ as “P if and only if Q7.

(a) Compute the disjunctive normal form of P < Q.
(b) Show that P ¢ @ := —(P < Q) is the same as P & Q.

For part (a) we first compute the truth table of P < @ as follows.
Q P=Q Q=P (P=Q N(Q=P)

N NN
NN
NN
R R
NN



(Observe that < acts just like an equals sign; it returns 7' if the arguments are the same and
it returns F' if the arguments are different.) Now we can read the disjunctive normal form
directly from the truth table:

PeQ=(PAQ)V(-PA-Q).

There is not much to do for part (b). We just draw the truth table and observe that the
fourth and fifth columns are the same.

P Q P5Q P#£Q PaqQ
T

T T F F
T F F T T
F T F T T
F F T F F

Now we have three different ways to think about the operation ¢. It can be a Boolean analogue
of “addition”, it can be the “exclusive or” logical operation, and we can also think of it as
“not equal to”.

4. Let B be a Boolean algebra. For all P, € B we define the “Sheffer stroke”
P1Q=—(PAQ).

Use the properties of Boolean algebra from the handout to prove the following formulas. Don’t

use truth tables! These formulas can be used to express any function {7, F}" — {T, F} in
terms of 1 alone.

(a) ~P=P1P
(b) PVQ=(PTP)T(QTQ)
(c) PAQ=(PTQ)T(P1TQ)

In this problem we will avoid truth tables and instead use synthetic Boolean algebra. I will
write each part as a two-line proof, quoting axioms and theorems using their number from the
handout. For part (a) we have

Pt P=~=(PAP) by definition
=-P. (6)

For part (b) we have

(PTP)T(QTQ)=-P1T-Q by part (a)
=-(-PA-Q) by definition
=PV -=Q (12)
=PVQ. ?

OOPS. We never proved that =—P = P did we? Let’s prove it now. We will use Theorem
11 (Uniqueness of Complements). To do this we note that

~-PANP=PA-P (2)
=0, (4)

and
-PVP=PV-P (2)

=1, (4)



Then by (11) we conclude that P must equal the complement of —=P. In other words, P = —=—P.
Let’s call this Theorem (13). This completes our proof of part (b). [Don't worry if you didn't
fill in this last detail. You won't lose any points for that.]

Finally, for part (c) we have

(PTQ)T(PTQ)==((PTQ)A(PTQ)) by definition
==(P1Q) (6)
=-(=(PAQ)) by definition
=PAQ (13).

That’s it.

[The results of Problem 4 prove that the Sheffer stroke is “universal”’. This means that we can
express any Boolean function using just the Sheffer stroke. For example, consider the function

o(P,Q,R)=(PAN=-Q)VR.
Then we have

SD(P7Q7R) =

PA-Q)VR

PAQTQ)VR

(PAQRTQNT(PAQTQ)T(RTR)
(PT@Q@TQNT(PT@Q@TQ)))T((PT(QRTQ)T(PT(QTQ))T(RTR)

~—~~ I~ —~

Obviously this is not a good language for humans to use, but computers are quite happy with it.
In fact, this is the language that is used inside of flash memory drives.]



