On this homework you will meet some new Boolean functions.

1. Given $P, Q \in \{T, F\}$ we define the **Boolean sum** (also called "exclusive OR"):

$$P \oplus Q := (P \land \neg Q) \lor (\neg P \land Q).$$

- (a) Draw the truth table for $P \oplus Q$.
- (b) Use truth tables to prove that for all $P, Q, R \in \{T, F\}$ we have

$$P \land (Q \oplus R) = (P \land Q) \oplus (P \land R).$$

[It is fair to think of \oplus as "addition" and \wedge as "multiplication".]

2. Given $P, Q \in \{T, F\}$ we define the function $P \Rightarrow Q$ with the following table:

$$\begin{array}{c|ccc} P & Q & P \Rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

We call this **logical implication** and we read $P \Rightarrow Q$ as "if P then Q" or "P implies Q".

- (a) Draw the truth table for $P \neq Q := \neg(P \Rightarrow Q)$.
- (b) Compute the disjunctive normal form of $P \neq Q$.
- (c) Use part (b) to find a simple formula for $P \Rightarrow Q$. [Hint: De Morgan's Law.]
- **3.** For all $P, Q \in \{T, F\}$ we define the function $P \Leftrightarrow Q$ by

$$P \Leftrightarrow Q := (P \Rightarrow Q) \land (Q \Rightarrow P).$$

We call this function **logical equivalence** and we read $P \Leftrightarrow Q$ as "P if and only if Q".

- (a) Compute the disjunctive normal form of $P \Leftrightarrow Q$.
- (b) Show that $P \not\Leftrightarrow Q := \neg(P \Leftrightarrow Q)$ is the same as $P \oplus Q$.
- **4.** Let B be a Boolean algebra. For all $P, Q \in B$ we define the "Sheffer stroke"

$$P \uparrow Q := \neg (P \land Q).$$

Use the properties of Boolean algebra from the handout to prove the following formulas. Don't use truth tables! These formulas can be used to express **any** function $\{T, F\}^n \to \{T, F\}$ in terms of \uparrow alone.

(a)
$$\neg P = P \uparrow P$$

(b) $P \lor Q = (P \uparrow P) \uparrow (Q \uparrow Q)$
(c) $P \land Q = (P \uparrow Q) \uparrow (P \uparrow Q)$