On this homework you will meet some new Boolean functions.

1. Given $P, Q \in\{T, F\}$ we define the Boolean sum (also called "exclusive OR"):

$$
P \oplus Q:=(P \wedge \neg Q) \vee(\neg P \wedge Q) .
$$

(a) Draw the truth table for $P \oplus Q$.
(b) Use truth tables to prove that for all $P, Q, R \in\{T, F\}$ we have

$$
P \wedge(Q \oplus R)=(P \wedge Q) \oplus(P \wedge R) .
$$

[It is fair to think of \oplus as "addition" and \wedge as "multiplication".]
2. Given $P, Q \in\{T, F\}$ we define the function $P \Rightarrow Q$ with the following table:

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

We call this logical implication and we read $P \Rightarrow Q$ as "if P then Q " or " P implies Q ".
(a) Draw the truth table for $P \nRightarrow Q:=\neg(P \Rightarrow Q)$.
(b) Compute the disjunctive normal form of $P \nRightarrow Q$.
(c) Use part (b) to find a simple formula for $P \Rightarrow Q$. [Hint: De Morgan's Law.]
3. For all $P, Q \in\{T, F\}$ we define the function $P \Leftrightarrow Q$ by

$$
P \Leftrightarrow Q:=(P \Rightarrow Q) \wedge(Q \Rightarrow P) .
$$

We call this function logical equivalence and we read $P \Leftrightarrow Q$ as " P if and only if Q ".
(a) Compute the disjunctive normal form of $P \Leftrightarrow Q$.
(b) Show that $P \Leftrightarrow Q:=\neg(P \Leftrightarrow Q)$ is the same as $P \oplus Q$.
4. Let B be a Boolean algebra. For all $P, Q \in B$ we define the "Sheffer stroke"

$$
P \uparrow Q:=\neg(P \wedge Q)
$$

Use the properties of Boolean algebra from the handout to prove the following formulas. Don't use truth tables! These formulas can be used to express any function $\{T, F\}^{n} \rightarrow\{T, F\}$ in terms of \uparrow alone.
(a) $\neg P=P \uparrow P$
(b) $P \vee Q=(P \uparrow P) \uparrow(Q \uparrow Q)$
(c) $P \wedge Q=(P \uparrow Q) \uparrow(P \uparrow Q)$

