If S is a finite set, we let $\# S$ denote its number of elements. We call this the size or the cardinality of S. Sometimes we use the equivalent notation $|S|:=\# S$.

1. Let X and Y be finite sets and let $f: X \rightarrow Y$ be a function.
(a) We say that $f: X \rightarrow Y$ is an injection if for all $y \in Y$ there is at most one $x \in X$ such that $f(x)=y$. If $f: X \rightarrow Y$ is an injection, show that $\# X \leq \# Y$.
(b) We say that $f: X \rightarrow Y$ is a surjection if for all $y \in Y$ there is at least one $x \in X$ such that $f(x)=y$. If $f: X \rightarrow Y$ is a surjection, show that $\# X \geq \# Y$.
(c) We say that $f: X \rightarrow Y$ is a bijection if it is both an injection and a surjection. If $f: X \rightarrow Y$ is a bijection, show that $\# X=\# Y$.
[Hint: For each $y \in Y$ let $d(y)$ denote the number of $x \in X$ such that $f(x)=y$. What can you say about the sum $\sum_{y \in Y} d(y)$?]

Before we begin, let $f: X \rightarrow Y$ be any function and for each $y \in Y$ let $d(y)$ be the number of elements $x \in X$ such that $f(x)=y$. Thus, $d(y)$ is the number of arrows pointing at y. If we sum the numbers $d(y)$ for all $y \in Y$ we are just counting all of the arrows. Since (by definition) there is exactly one arrow pointing from each element of X we conclude that

$$
\# X=\sum_{y \in Y} d(y) .
$$

For part (a) we assume that $f: X \rightarrow Y$ is injective. In this case we have $d(y) \leq 1$ for all $y \in Y$. Summing over these numbers gives

$$
\# X=\sum_{y \in Y} d(y) \leq \sum_{y \in Y} 1=\# Y
$$

For part (b) we assume that $f: X \rightarrow Y$ is surjective. In this case we have $d(y) \geq 1$ for all $y \in Y$. Summing over these numbers gives

$$
\# X=\sum_{y \in Y} d(y) \geq \sum_{y \in Y} 1=\# Y
$$

For part (c) we assume that $f: X \rightarrow Y$ is bijective (i.e., both injective and surjective). Since f is injective we know from part (a) that $\# X \leq \# Y$ and since f is surjective we know from part (b) that $\# X \geq \# Y$. Putting these together, we conclude that $\# X=\# Y$.
2. If X and Y are finite sets, explain why there are $\# Y^{\# X}$ different functions from X to Y.

Recall that a function $f: X \rightarrow Y$ is a set of arrows of the form $x \rightarrow y$ (with $x \in X$ and $y \in Y$) with the property that for each $x \in X$ there is a unique $y \in Y$ such that $x \rightarrow y$. We call this unique element $y=f(x)$. Thus to specify a function $f: X \rightarrow Y$ we just need to choose the value $f(x)$ for each element $x \in X$. For each $x \in X$ there are $\# Y$ choices for $y=f(x) \in Y$. These choices can be made completely independently, so the total number of possibilities is

$$
\underbrace{\# Y \times \# Y \times \cdots \times \# Y}_{\# X \text { times }}=\# Y^{\# X}
$$

We conclude that the number of different functions from X to Y is $\# Y^{\# X}$.
3. Explicitly write down all of the functions from $\{1,2,3\}$ to $\{T, F\}$. How many are there? (See Problem 2.) How many of these functions are injective, surjective, bijective?

Here they are:

1
$2 \longrightarrow T$
$3 \longrightarrow F$

Note that there are $8=2^{3}=\#\{T, F\}^{\#\{1,2,3\}}$ different functions, which agrees with the result of Problem 2. Note that 6 of the functions are surjective, 0 are injective, and 0 are bijective. In fact, we can use Problem 1 to see that no function from $\{1,2,3\}$ to $\{T, F\}$ can possibly be injective. Suppose, hypothetically, that we did have an injective function $f:\{1,2,3\} \rightarrow\{T, F\}$. Then Problem 1(a) implies that $\#\{1,2,3\} \leq \#\{T, F\}$, which is a contradiction.
4. Explicitly write down all of the subsets of $\{1,2,3\}$. Compare to your answer to Problem
3. Can you describe a bijection (one-to-one correspondence) between the set of functions $\{1,2,3\} \rightarrow\{T, F\}$ and the set of subsets of $\{1,2,3\}$?

Here they are:

$$
\{1,2,3\}
$$

\emptyset

I have arranged them to make clear that there is a one-to-one correspondence (i.e., a bijection) between the set of functions $\{1,2,3\} \rightarrow\{T, F\}$ and the set of subsets of $\{1,2,3\}$. We can describe this explicitly as follows.

Given a function $f:\{1,2,3\} \rightarrow\{T, F\}$ we define the subset

$$
\Phi(f):=\{x \in\{1,2,3\}: f(x)=T\} \subseteq\{1,2,3\} .
$$

To verify that Φ is a one-to-one correspondence, we simply observe that it can be inverted. Given any subset $S \subseteq\{1,2,3\}$, note that $\Phi^{-1}(S)$ is the function $\{1,2,3\} \rightarrow\{T, F\}$ that sends x to T when $x \in S$ and sends x to F when $x \notin S$.

Maybe we could come up with some fancy notation for this but we won't bother. The main thing I want to point out is that because there exists bijection, Problem 1(c) implies that there are the same number of subsets of $\{1,2,3\}$ as there are functions $\{1,2,3\} \rightarrow\{T, F\}$: namely, $8=2^{3}$.
[Thinking Problem: Let X be any set with n elements. How many subsets does X have? Why?]
5. How many functions are there from $\{1,2,3\}$ to $\{1,2,3\}$? (Don't write them all down.) How many of the functions $\{1,2,3\} \rightarrow\{1,2,3\}$ are bijections? Explicitly write them down.

From Problem 2 we know that the number of functions $\{1,2,3\} \rightarrow\{1,2,3\}$ is $3^{3}=27$. I won't write them all down. Of these 27 functions, 6 are bijections. Here they are:

[Thinking Problem: Let X be any set with n elements. How many bijections $X \rightarrow X$ are there?]

