If S is a finite set, we let $\# S$ denote its number of elements. We call this the size or the cardinality of S. Sometimes we use the equivalent notation $|S|:=\# S$.

1. Let X and Y be finite sets and let $f: X \rightarrow Y$ be a function.
(a) We say that $f: X \rightarrow Y$ is an injection if for all $y \in Y$ there is at most one $x \in X$ such that $f(x)=y$. If $f: X \rightarrow Y$ is an injection, show that $\# X \leq \# Y$.
(b) We say that $f: X \rightarrow Y$ is a surjection if for all $y \in Y$ there is at least one $x \in X$ such that $f(x)=y$. If $f: X \rightarrow Y$ is a surjection, show that $\# X \geq \# Y$.
(c) We say that $f: X \rightarrow Y$ is a bijection if it is both an injection and a surjection. If $f: X \rightarrow Y$ is a bijection, show that $\# X=\# Y$.
[Hint: For each $y \in Y$ let $d(y)$ denote the number of $x \in X$ such that $f(x)=y$. What can you say about the sum $\sum_{y \in Y} d(y)$?]
2. If X and Y are finite sets, explain why there are $\# Y^{\# X}$ different functions from X to Y.
3. Explicitly write down all of the functions from $\{1,2,3\}$ to $\{T, F\}$. How many are there? (See Problem 2.) How many of these functions are injective, surjective, bijective?
4. Explicitly write down all of the subsets of $\{1,2,3\}$. Compare to your answer to Problem 3. Can you describe a bijection (one-to-one correspondence) between the set of functions $\{1,2,3\} \rightarrow\{T, F\}$ and the set of subsets of $\{1,2,3\}$?
5. How many functions are there from $\{1,2,3\}$ to $\{1,2,3\}$? (Don't write them all down.) How many of the functions $\{1,2,3\} \rightarrow\{1,2,3\}$ are bijections? Explicitly write them down.
