
Math 309 Fall 2014
Homework 1 Solutions Drew Armstrong

For all positive integers p and n we consider the sum of the first n p-th powers:

Sp(n) := 1p + 2p + 3p + · · · + np =

n∑
k=1

kp.

We have already seen that S1(n) = n(n+ 1)/2 and S2(n) = n(n+ 1)(2n+ 1)/6. Now you will
show that S3(n) = n2(n + 1)2/4 using the technique of induction.

1. Verify that S3(n) = n2(n + 1)2/4 is true for small values of n.

When n = 1 the equation

13 = S3(1) =
12 · 22

4
= 1

is true. When n = 2 the equation

13 + 23 = S3(2) =
22 · 32

4
= 9

is true. When n = 3 the equation

13 + 23 + 33 = S3(3) =
32 · 42

4
= 36

is true. Technically, for the proof we only need to check the case n = 1. I did the other two
just for fun, and to make sure that I actually believe the formula. In real life I would probably
have my computer check a whole bunch of cases.

2. Let n be some “fixed, but arbitrary” positive integer. Show that if S3(n) = n2(n + 1)2/4
is true then S3(n + 1) = (n + 1)2(n + 2)2/4 is also true. [Hint: Take out common factors
whenever you can.]

[Warning: Look carefully at the words I use in the proof. They are not random.
If your proof doesn’t have any words at all, then it is not correct. At a bare
minimum, your proof must contain the words “if . . . then”.]

Let n be some fixed but arbitrary positive integer. We will assume for induction that
the equation

S3(n) =
n2(n + 1)2

4
.

is true. In this hypothetical case, we want to show that the equation

S3(n + 1) =
((n + 1))2((n + 1) + 1)2

4
=

(n + 1)2(n + 2)2

4

is also true. To do this we begin by considering the definition of S3(n + 1). Recall that

S3(n + 1) = 13 + 23 + 33 + · · · + (n + 1)3.



How can we prove anything about this? We only know about S3(n). Aha! Let’s try to express
S3(n + 1) (which we don’t know) in terms of S3(n) (which we do know). Good idea. Now
let’s finish the proof. We have

S3(n + 1) = 13 + 23 + · · · + (n + 1)3

= (13 + 23 + · · · + n3) + (n + 1)3

= S3(n) + (n + 1)3

=
n2(n + 1)2

4
+ (n + 1)3

= (n + 1)2
(
n2

4
+ (n + 1)

)
= (n + 1)2

(
n2 + 4n + 4

4

)
=

(n + 1)2(n + 2)2

4
,

as desired. The proof is done.

[Remark: Hey, did you notice that S3(n) = S1(n)2? That’s weird. Why would that happen?]

3. Use your knowledge of S1(n), S2(n), and S3(n) to find a closed form for the following sum:

n∑
k=1

k(k + 1)(k + 2).

First we expand the summand:

k(k + 1)(k + 2) = k(k2 + 3k + 2) = k3 + 3k2 + 2k.

Now we distribute the sum:
n∑

k=1

k(k + 1)(k + 2) =
n∑

k=1

(k3 + 3k2 + 2k)

=
n∑

k=1

k3 + 3
n∑

k=1

k2 + 2
n∑

k=1

k

= S3(n) + 3 · S2(n) + 2 · S1(n)

=
n2(n + 1)2

4
+ 3 · n(n + 1)(2n + 1)

6
+ 2 · n(n + 1)

2

= n(n + 1)

(
n(n + 1)

4
+

2n + 1

2
+ 1

)
= n(n + 1)

(
n(n + 1) + 2(2n + 1) + 4

4

)
= n(n + 1)

(
n2 + n + 5n + 2 + 4

4

)
=

n(n + 1)(n + 2)(n + 3)

4
.



[Remark: Hey, it’s pretty cool that it the formula factors like that. Why does that happen? We’ll
see a good reason later.]

For the next two problems, consider the recurrence relation:

Fn = Fn−1 + 2n.

4. (a) Compile a table of Fn with initial condition F0 = 0.
(b) Compile a table of Fn with initial condition F2 = 5.
(c) If F7 = x then what is F3?

With initial condition F0 = 0 we have

n 0 1 2 3 4 5 6 7 · · ·
Fn 0 2 6 12 20 30 42 56 · · ·

With initial condition F2 = 5 we have

n 0 1 2 3 4 5 6 7 · · ·
Fn −1 1 5 11 19 29 40 55 · · ·

Note that to get from the first table to the second we just subtract 1 from each Fn. I’ll bet
I can use that observation to solve part (c). In the first table we have F7 = 56. To get from
56 to x we should add x− 56. In the first table we have F3 = 12. Adding x− 56 to this gives
12 + (x− 56) = x− 44. So I guess that F3 = x− 44. Is there a more rigorous way to do this?
Yes. We can rewrite the recurrence as Fn−1 = Fn − 2n. If F7 = x then we have

F6 = F7 − 14 = x− 14

F5 = F6 − 12 = x− 14 − 12 = x− 26

F4 = F5 − 10 = x− 26 − 10 = x− 36

F3 = F4 − 8 = x− 36 − 8 = x− 44.

5. Find a closed formula for Fn with initial condition F0 = 0. [Hint: Expand the recurrence
to show that Fn = 0 + 2 + 4 + · · · + 2n. Now what?]

Using the initial condition F0 = 0 gives

F0 = 0

F1 = F0 + 2 = 0 + 2

F2 = F1 + 4 = 0 + 2 + 4

...

Fn = 0 + 2 + 4 + · · · + 2n.

We can rewrite this and use the formula S1(n) = n(n + 1)/2 to get

Fn = 2 + 4 + 6 + · · · + 2n = 2(1 + 2 + 3 + · · · + n) = 2 · n(n + 1)

2
= n(n + 1).

That formula is about as “closed” as you can get. Good work.


