For all positive integers p and n we consider the sum of the first $n p$-th powers:

$$
S_{p}(n):=1^{p}+2^{p}+3^{p}+\cdots+n^{p}=\sum_{k=1}^{n} k^{p} .
$$

We have already seen that $S_{1}(n)=n(n+1) / 2$ and $S_{2}(n)=n(n+1)(2 n+1) / 6$. Now you will show that $S_{3}(n)=n^{2}(n+1)^{2} / 4$ using the technique of induction.

1. Verify that $S_{3}(n)=n^{2}(n+1)^{2} / 4$ is true for small values of n.
2. Let n be some "fixed, but arbitrary" positive integer. Show that if $S_{3}(n)=n^{2}(n+1)^{2} / 4$ is true then $S_{3}(n+1)=(n+1)^{2}(n+2)^{2} / 4$ is also true. [Hint: Take out common factors whenever you can.]
3. Use your knowledge of $S_{1}(n), S_{2}(n)$, and $S_{3}(n)$ to find a closed form for the following sum:

$$
\sum_{k=1}^{n} k(k+1)(k+2) .
$$

For the next two problems, consider the recurrence relation:

$$
F_{n}=F_{n-1}+2 n .
$$

4. (a) Compile a table of F_{n} with initial condition $F_{0}=0$.
(b) Compile a table of F_{n} with initial condition $F_{2}=5$.
(c) If $F_{7}=x$ then what is F_{3} ?
5. Find a closed formula for F_{n} with initial condition $F_{0}=0$. [Hint: Expand the recurrence to show that $F_{n}=0+2+4+\cdots+2 n$. Now what?]
