There are 5 problems, with a total of 20 parts. Each part is worth 2 points, for a total of 40 points. If two exams are submitted with identical answers then both will receive 0 points.

1. Boolean Algebra. Recall that the Boolean function \Rightarrow is defined by

$$
P \Rightarrow Q:=(\neg P) \vee Q
$$

(a) Draw the truth table for $P \Rightarrow Q$.

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

(b) Accurately state De Morgan's Law.

For all Boolean variables P and Q we have

- $\neg(P \vee Q)=(\neg P) \wedge(\neg Q)$
- $\neg(P \wedge Q)=(\neg P) \vee(\neg Q)$
(c) Use De Morgan's Law to prove that $(P \Rightarrow Q)=((\neg Q) \Rightarrow(\neg P))$.

Oops. De Morgan's Law is not actually necessary to prove this. Sorry about that. We have

$$
\begin{aligned}
(\neg Q) \Rightarrow(\neg P) & =\neg(\neg Q) \vee(\neg P) \\
& =Q \vee(\neg P) \\
& =(\neg P) \vee Q \\
& =P \Rightarrow Q .
\end{aligned}
$$

(d) Use a truth table to prove that $(P \Rightarrow Q) \neq(Q \Rightarrow P)$.

Note that $P \Rightarrow Q$ and $Q \Rightarrow P$ differ in the second and third rows:

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

2. Boolean Functions. A Boolean function with m inputs and n outputs has the form

$$
\varphi:\{T, F\}^{m} \rightarrow\{T, F\}^{n}
$$

(a) Explicitly write down all the elements of the set $\{T, F\}^{3}$.

Recall that $\{T, F\}^{3}=\{T, F\} \times\{T, F\} \times\{T, F\}$ consists of ordered triples of elements from $\{T, F\}$. The elements of the set are:

$$
\begin{array}{lll}
& (T, T, T) & \\
(T, T, F) & (T, F, T) & (F, T, T) \\
(T, F, F) & (F, T, F) & (F, F, T) \\
& (F, F, F) &
\end{array}
$$

(b) How many elements does the set $\{T, F\}^{n}$ have?

$$
\#\left(\{T, F\}^{n}\right)=(\#\{T, F\})^{n}=2^{n}
$$

(c) How many functions are there from $\{T, F\}^{m}$ to $\{T, F\}^{n}$?

The number of functions from $\{T, F,\}^{m}$ to $\{T, F\}^{n}$ is

$$
\#\left(\{T, F\}^{n}\right)^{\#\left(\{T, F\}^{m}\right)}=\left(2^{n}\right)^{\left(2^{m}\right)}
$$

(d) How many Boolean functions are there with 3 inputs and 1 output?

When $m=3$ and $n=1$ the number of functions is

$$
\left(2^{n}\right)^{\left(2^{m}\right)}=\left(2^{1}\right)^{\left(2^{3}\right)}=2^{8}=256
$$

3. Subsets \leftrightarrow Binary Strings. Consider the set $U=\{1,2,3,4,5\}$.
(a) Make a table to display the number of subsets of U with size k, for $k=0,1,2,3,4,5$.

k	0	1	2	3	4	5
\# subsets of size k	1	5	10	10	5	1

(b) Explicitly write down all of the subsets of U containing two elements.

$$
\begin{array}{llll}
\{1,2\}, & \{1,3\}, & \{1,4\}, & \{1,5\}, \\
\{2,3\}, & \{2,4\}, & \{2,5\}, & \\
\{3,4\}, & \{3,5\}, & & \\
\{4,5\} & &
\end{array}
$$

(c) Explicitly write down all of the binary strings with two " 1 "s and three " 0 " s .

$$
\begin{array}{lll}
11000, & 10100, & 10010, \quad 10001, \\
01100, & 01010, & 01001, \\
00110, & 00101, & \\
00011 &
\end{array}
$$

(d) Draw lines between your answers to (b) and (c) to demonstrate a natural bijection. The bijection is implied by the way I drew the two sets.

4. The Binomial Theorem.

(a) Accurately state the Binomial Theorem.

For any number a and b, and for any integer $n \geq 0$ we have

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

(b) Use the Binomial Theorem to prove that $2^{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}$.

Subsitute $a=1$ and $b=1$.
(c) Use the Binomial Theorem to prove that $3^{n}=1\binom{n}{0}+2\binom{n}{1}+4\binom{n}{2}+\cdots+2^{n}\binom{n}{n}$.

Substitute $a=2$ and $b=1$.
(d) Use the Binomial Theorem to prove that $0=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots+(-1)^{n}\binom{n}{n}$.

Substitute $a=-1$ and $b=1$.

5. Binomial Coefficients.

(a) State the formula for $\binom{n}{k}$.

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

(b) Use the formula to prove that $k\binom{n}{k}=n\binom{n-1}{k-1}$.

$$
k\binom{n}{k}=k \frac{n!}{k!(n-k)!}=\frac{n!}{(k-1)!(n-k)!}=n \frac{(n-1)!}{(k-1)!(n-k)!}=n\binom{n-1}{k-1}
$$

For parts (c) and (d), suppose you want to choose a committee of k people from a set of n people. One person on the committee will be called the "president".
(c) Explain why the number of ways to do this is $k\binom{n}{k}$.

If we choose the committee first and then the president, there are $\binom{n}{k}$ ways to choose the committee and then k ways to choose the president from the committee. Hence the total number of choices is $\binom{n}{k} k$.
(d) Explain why that the number of ways to do this is $n\binom{n-1}{k-1}$.

It we choose the president first and then the committee, there are n ways to choose the president and then $\binom{n-1}{k-1}$ ways to choose the other $k-1$ members of the committee from the remaining $n-1$ people. Hence the total number of choices is $n\binom{n-1}{k-1}$.

