There are 5 problems, with a total of 20 parts. Each part is worth 2 points, for a total of 40 points. If two exams are submitted with identical answers then **both** will receive 0 points.

1. Boolean Algebra. Recall that the Boolean function \Rightarrow is defined by

$$P \Rightarrow Q := (\neg P) \lor Q.$$

(a) Draw the truth table for $P \Rightarrow Q$.

(b) Accurately state De Morgan's Law.

For all Boolean variables P and Q we have

- $\bullet \ \neg (P \lor Q) = (\neg P) \land (\neg Q)$
- $\neg (P \land Q) = (\neg P) \lor (\neg Q)$
- (c) Use De Morgan's Law to prove that $(P \Rightarrow Q) = ((\neg Q) \Rightarrow (\neg P)).$

Oops. De Morgan's Law is not actually necessary to prove this. Sorry about that. We have

$$(\neg Q) \Rightarrow (\neg P) = \neg(\neg Q) \lor (\neg P)$$
$$= Q \lor (\neg P)$$
$$= (\neg P) \lor Q$$
$$= P \Rightarrow Q.$$

(d) Use a truth table to prove that $(P \Rightarrow Q) \neq (Q \Rightarrow P)$.

Note that $P \Rightarrow Q$ and $Q \Rightarrow P$ differ in the second and third rows:

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

2. Boolean Functions. A Boolean function with m inputs and n outputs has the form $\varphi: \{T, F\}^m \to \{T, F\}^n$.

(a) Explicitly write down all the elements of the set $\{T, F\}^3$.

Recall that $\{T, F\}^3 = \{T, F\} \times \{T, F\} \times \{T, F\}$ consists of **ordered triples** of elements from $\{T, F\}$. The elements of the set are:

$$\begin{array}{ccc} (T,T,T) \\ (T,T,F) & (T,F,T) & (F,T,T) \\ (T,F,F) & (F,T,F) & (F,F,T) \\ & (F,F,F) \end{array}$$

(b) How many elements does the set $\{T, F\}^n$ have?

$$#({T,F}^n) = (#{T,F})^n = 2^n$$

- (c) How many functions are there from $\{T, F\}^m$ to $\{T, F\}^n$? The number of functions from $\{T, F, \}^m$ to $\{T, F\}^n$ is $\#(\{T, F\}^n)^{\#(\{T, F\}^m)} = (2^n)^{(2^m)}$
- (d) How many Boolean functions are there with 3 inputs and 1 output?

When m = 3 and n = 1 the number of functions is $(2^n)^{(2^m)} = (2^1)^{(2^3)} = 2^8 = 256.$

- **3.** Subsets \leftrightarrow Binary Strings. Consider the set $U = \{1, 2, 3, 4, 5\}$.
 - (a) Make a table to display the number of subsets of U with size k, for k = 0, 1, 2, 3, 4, 5.

(b) Explicitly write down all of the subsets of U containing two elements.

(c) Explicitly write down all of the binary strings with two "1"s and three "0"s.

(d) Draw lines between your answers to (b) and (c) to demonstrate a natural bijection.

The bijection is implied by the way I drew the two sets.

4. The Binomial Theorem.

(a) Accurately state the Binomial Theorem.

For any number a and b, and for any integer $n \ge 0$ we have

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

- (b) Use the Binomial Theorem to prove that $2^n = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$. Subsitute a = 1 and b = 1.
- (c) Use the Binomial Theorem to prove that $3^n = 1\binom{n}{0} + 2\binom{n}{1} + 4\binom{n}{2} + \dots + 2^n\binom{n}{n}$. Substitute a = 2 and b = 1.
- (d) Use the Binomial Theorem to prove that $0 = \binom{n}{0} \binom{n}{1} + \binom{n}{2} \dots + (-1)^n \binom{n}{n}$. Substitute a = -1 and b = 1.

5. Binomial Coefficients.

(a) State the formula for $\binom{n}{k}$.

$$\binom{n}{k} = \frac{n!}{k! \left(n-k\right)!}$$

(b) Use the formula to prove that $k\binom{n}{k} = n\binom{n-1}{k-1}$.

$$k\binom{n}{k} = k\frac{n!}{k! (n-k)!} = \frac{n!}{(k-1)! (n-k)!} = n\frac{(n-1)!}{(k-1)! (n-k)!} = n\binom{n-1}{k-1}$$

For parts (c) and (d), suppose you want to choose a committee of k people from a set of n people. One person on the committee will be called the "president".

(c) Explain why the number of ways to do this is $k\binom{n}{k}$.

If we choose the committee first and then the president, there are $\binom{n}{k}$ ways to choose the committee and then k ways to choose the president from the committee. Hence the total number of choices is $\binom{n}{k}k$.

(d) Explain why that the number of ways to do this is $n\binom{n-1}{k-1}$.

It we choose the president first and then the committee, there are n ways to choose the president and then $\binom{n-1}{k-1}$ ways to choose the other k-1 members of the committee from the remaining n-1 people. Hence the total number of choices is $n\binom{n-1}{k-1}$.