There are 5 problems, each with 3 parts. Each part is worth 2 points, for a total of 30 points. If any two exams are submitted with identical answers then both exams will receive 0 points.

1. Induction. For all positive integers n and p we define

$$
S_{p}(n):=1^{p}+2^{p}+3^{p}+\cdots+n^{p}
$$

In this problem you will use induction to prove that $S_{1}(n)=n(n+1) / 2$ for all $n \geq 1$.
(a) Check that the formula $S_{1}(n)=n(n+1) / 2$ is true for $n=1,2$, and 3 .

n	$S_{1}(n)$	$n(n+1) / 2$	correct?
1	1	$\frac{1(1+1)}{2}=\frac{1 \cdot 2}{2}=1$	\checkmark
2	$1+2=3$	$\frac{2(2+1)}{2}=\frac{2 \cdot 3}{2}=3$	\checkmark
1	$1+2+3=6$	$\frac{3(3+1)}{2}=\frac{3 \cdot 4}{2}=6$	\checkmark

(b) Find a simple equation relating $S_{1}(n)$ and $S_{1}(n+1)$.

$$
\begin{aligned}
& S_{1}(n+1)=1+2+3+\cdots+n+(n+1) \\
& S_{1}(n+1)=S_{1}(n)+(n+1)
\end{aligned}
$$

(c) Prove that if $S_{1}(n)=n(n+1) / 2$, then $S_{1}(n+1)=(n+1)(n+2) / 2$. You must begin your proof with the words "Consider some $n \geq 1$ and assume that...".

Consider some $n \geq 1$ and assume that $S_{1}(n)=n(n+1) / 2$. In this case we have

$$
\begin{aligned}
S_{1}(n+1) & =S_{1}(n)+(n+1) \\
& =\frac{n(n+1)}{2}+(n+1) \\
& =(n+1)\left(\frac{n}{2}+1\right) \\
& =\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

as desired.
2. Recurrence. Consider the following recurrence relation:

$$
p_{n}=p_{n-1}+n
$$

(a) Assume that $p_{0}=3$. In this case, make a table of p_{n} for n between 0 and 6 .

n	0	1	2	3	4	5	6
p_{n}	3	4	6	9	13	18	24

(b) Assume that $p_{5}=20$. In this case, tell me the value of p_{2}.

We can rearrange the recurrence to get $p_{n-1}=p_{n}-n$. Then we have

$$
\begin{aligned}
& p_{4}=p_{5}-5=20-5=15 \\
& p_{3}=p_{4}-4=15-4=11 \\
& p_{2}=p_{3}-3=11-3=8 .
\end{aligned}
$$

(c) Assume that $p_{0}=1$. In this case, tell me a closed formula for p_{n}. [Hint: Prob 1.]

We have

$$
\begin{aligned}
p_{0} & =1 \\
p_{1} & =p_{0}+1=1+1 \\
p_{2} & =p_{1}+2=1+1+2 \\
p_{3} & =p_{2}+3=1+1+2+3 \\
& \vdots \\
p_{n} & =1+(1+2+3+\cdots+n) .
\end{aligned}
$$

Then using the formula from Problem 1 gives $p_{n}=1+\frac{n(n+1)}{2}$.
3. Functions. Consider the sets $X=\{a, b, c, d\}$ and $Y=\{p, q, r, s\}$.
(a) Draw an example of a function $f: X \rightarrow Y$ that is not injective and not surjective.

There are 232 different correct answers. Here is one of them:

(b) Tell me the total number of different functions from X to Y.

In general the number of different functions from X to Y is $\# Y^{\# X}$. In this case we have $\# X=\# Y=4$, hence there are $4^{4}=256$ functions.
(c) Draw an example of an invertible function $f: X \rightarrow Y$. Also draw its inverse f^{-1}.

There are 24 different correct answers. Here is one of them:

4. Venn Diagrams. Fix a universal set U and consider sets $A, B, C \subseteq U$. In this problem you will use Venn diagrams to prove that $A \cup\left(B \cap C^{c}\right)=(A \cup B) \cap\left(A \cup C^{c}\right)$.
(a) Draw a general Venn diagram displaying the sets A, B, C, and U.

(b) Use Venn diagrams to draw the set $A \cup\left(B \cap C^{c}\right)$. Show intermediate steps.

(c) Use Venn diagrams to draw the set $(A \cup B) \cap\left(A \cup C^{c}\right)$. Show intermediate steps.

[Remark: The fact that $A \cup\left(B \cap C^{c}\right)=(A \cup B) \cap\left(A \cup C^{c}\right)$ is an example of the distributive law.]
5. Truth Tables. Let P and Q be logical statements.
(a) Draw the truth table for the statement $P \wedge Q$ (i.e., P AND Q).

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F

(b) Draw the truth table for the statement $\neg(P \wedge Q)$ (i.e., NOT $(P$ AND $Q)$)

P	Q	$P \wedge Q$	$\neg(P \wedge Q)$
T	T	T	F
T	F	F	T
F	T	F	T
F	F	F	T

(c) Draw the truth table for the statement $\neg P \vee \neg Q$ (i.e., (NOT P) OR (NOT Q)). [Hint: It may help to think about the Venn diagram of the set $A^{c} \cup B^{c}$.]

P	Q	$\neg P$	$\neg Q$	$\neg P \vee \neg Q$
T	T	F	F	F
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

[Remark: The fact that $\neg(P \wedge Q)=\neg P \vee \neg Q$ is an example of de Morgan's law.]

