Here's a joke definition of the integers:

$$\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$$

We all "know" the basic properties of this set because we've been fooling around with it since childhood. But if we want to **prove** anything about \mathbb{Z} (and we do) then we need a formal definition. First I'll give a friendly definition. This just states everything we already "know" in formal language. As you see, it's a bit long. Afterwards I'll give a more efficient (but much more subtle) definition of \mathbb{Z} .

FRIENDLY DEFINITION

Let \mathbb{Z} be a set equipped with

- an equivalence relation "=" defined by
 - $\forall a \in \mathbb{Z}, a = a \text{ (reflexive)}$
 - $\forall a, b \in \mathbb{Z}, (a = b) \Rightarrow (b = a) \text{ (symmetric)}$
 - $\forall a, b, c \in \mathbb{Z}, (a = b \land b = c) \Rightarrow (a = c) \text{ (transitive)},$
- a strict total ordering "<" defined by
 - $\forall a, b, c \in \mathbb{Z}, (a < b \land b < c) \Rightarrow (a < c) \text{ (transitive)}$
 - $\forall a, b \in \mathbb{Z}$, exactly one of the following is true (trichotomy):

$$a < b$$
 or $a = b$ or $b < a$.

- and two binary operations
 - $\forall a, b \in \mathbb{Z}, \exists a + b \in \mathbb{Z} \text{ (addition)}$
 - $\forall a, b \in \mathbb{Z}, \exists ab \in \mathbb{Z} \text{ (multiplication)}$
 - $\forall a, b, c \in \mathbb{Z}, (a = b) \Rightarrow (a + c = b + c \land ac = bc)$ (substitution)

which satisfy the following properties:

Axioms of Addition.

- (A1) $\forall a, b \in \mathbb{Z}, a + b = b + a$ (commutative)
- (A2) $\forall a, b, c \in \mathbb{Z}, a + (b + c) = (a + b) + c$ (associative)
- (A3) $\exists 0 \in \mathbb{Z}, \forall a \in \mathbb{Z}, 0 + a = a \text{ (additive identity exists)}$
- (A4) $\forall a \in \mathbb{Z}, \exists b \in \mathbb{Z}, a+b=0$ (additive inverses exist)

These four properties tell us that \mathbb{Z} is an additive group. It has a special element called 0 that acts as an "identity element" for addition, and every integer a has an "additive inverse," which we will call -a.

Axioms of Multiplication.

- (M1) $\forall a, b \in \mathbb{Z}, ab = ba$ (commutative)
- (M2) $\forall a, b, c \in \mathbb{Z}, a(bc) = (ab)c$ (associative)
- (M3) $\exists 1 \in \mathbb{Z}_{\neq 0}, \forall a \in \mathbb{Z}, 1a = a$ (multiplicative identity exists)

Notice that elements of \mathbb{Z} do **not** have "multiplicative inverses". That is, we can't divide in \mathbb{Z} . So \mathbb{Z} is not quite a group under multiplication. We also need to say how addition and multiplication behave together.

Axiom of Distribution.

(D)
$$\forall a, b, c \in \mathbb{Z}, a(b+c) = ab + ac$$

We can paraphrase these first eight properties by saying that \mathbb{Z} is a *(commutative) ring*. Next we will describe how arithmetic and order interact.

Axioms of Order. Define "a < b" to mean " $a \le b$ and $a \ne b$."

- (O1) $\forall a, b, c \in \mathbb{Z}, (a < b) \Rightarrow (a + c < b + c)$
- (O2) $\forall a, b, c \in \mathbb{Z}, (a < b \land 0 < c) \Rightarrow (ac < bc)$
- (O3) 0 < 1

These first eleven properties tell us that \mathbb{Z} is an *ordered ring*. However, we have not yet defined the integers because there exist other ordered rings, for example the rational numbers \mathbb{Q} and the real numbers \mathbb{R} . To distinguish \mathbb{Z} among the ordered rings we need one final axiom. This last axiom is **not obvious** and it took a long time for people to realize that it is an axiom and not a theorem. It is convenient to use the notation

$$(a \le b) := (a < b \lor a = b).$$

The Well-Ordering Axiom.

(WO) Suppose that $S \subseteq \mathbb{Z}$ is a **non-empty set** $(\exists s \in \mathbb{Z}, s \in S)$ that has a **lower bound** $(\exists b \in \mathbb{Z}, \forall s \in S, b \leq s)$. Then S has a **least element** $(\exists m \in S, \forall s \in S, m \leq s)$.

This axiom is also known as the *principle of induction*; we will use it a lot. Thus endeth the friendly definition.

SUBTLE DEFINITION

The above definition is friendly and practical. But it is quite long! You might ask whether we can define \mathbb{Z} using fewer axioms; the answer is "Yes." The most efficient definition of \mathbb{Z} is due to Giuseppe Peano (1858–1932). His definition is efficient, but it no longer looks much like the integers.

Peano's Axioms. Let \mathbb{N} be a set equipped with an equivalence relation "=" and a unary "successor" operation $S: \mathbb{N} \to \mathbb{N}$, satisfying the following four axioms:

- (P1) $0 \in \mathbb{N}$ (there is an element called 0)
- (P2) $\forall n \in \mathbb{N}, S(n) \neq 0$ (0 is not the successor of any natural number)
- (P3) $\forall m, n \in \mathbb{N}, (S(m) = S(n)) \Rightarrow (m = n)$ (S is an injective function)
- (P4) **Principle of Induction.** If a set $K \subseteq \mathbb{N}$ of natural numbers satisfies

$$\begin{cases} 0 \in K, & (0 \text{ is in } K) \\ \forall n \in \mathbb{N}, n \in K \Rightarrow S(n) \in K, & (K \text{ is closed under succession}) \end{cases}$$
then $K = \mathbb{N}$ (K is everything).

With a lot of work, one can use \mathbb{N} and S to define a set \mathbb{Z} with addition, multiplication, a total ordering, etc., and show that it has all of the desired properties. Good luck to you. I'll stick with the friendly definition.