Here's a joke definition of the integers:

$$
\mathbb{Z}:=\{\ldots,-2,-1,0,1,2, \ldots\} .
$$

We all "know" the basic properties of this set because we've been fooling around with it since childhood. But if we want to prove anything about \mathbb{Z} (and we do) then we need a formal definition. First I'll give a friendly definition. This just states everything we already "know" in formal language. As you see, it's a bit long. Afterwards I'll give a more efficient (but much more subtle) definition of \mathbb{Z}.

Friendly Definition

Let \mathbb{Z} be a set equipped with

- an equivalence relation "=" defined by
$-\forall a \in \mathbb{Z}, a=a$ (reflexive)
- $\forall a, b \in \mathbb{Z},(a=b) \Rightarrow(b=a)$ (symmetric)
$-\forall a, b, c \in \mathbb{Z},(a=b \wedge b=c) \Rightarrow(a=c)$ (transitive),
- a strict total ordering " $<$ " defined by
$-\forall a, b, c \in \mathbb{Z},(a<b \wedge b<c) \Rightarrow(a<c)$ (transitive)
$-\forall a, b \in \mathbb{Z}$, exactly one of the following is true (trichotomy):

$$
a<b \quad \text { or } a=b \text { or } b<a \text {. }
$$

- and two binary operations
$-\forall a, b \in \mathbb{Z}, \exists a+b \in \mathbb{Z}$ (addition)
- $\forall a, b \in \mathbb{Z}, \exists a b \in \mathbb{Z}$ (multiplication)
$-\forall a, b, c \in \mathbb{Z},(a=b) \Rightarrow(a+c=b+c \wedge a c=b c)$ (substitution)
which satisfy the following properties:

Axioms of Addition.

(A1) $\forall a, b \in \mathbb{Z}, a+b=b+a$ (commutative)
(A2) $\forall a, b, c \in \mathbb{Z}, a+(b+c)=(a+b)+c$ (associative)
(A3) $\exists 0 \in \mathbb{Z}, \forall a \in \mathbb{Z}, 0+a=a$ (additive identity exists)
(A4) $\forall a \in \mathbb{Z}, \exists b \in \mathbb{Z}, a+b=0$ (additive inverses exist)
These four properties tell us that \mathbb{Z} is an additive group. It has a special element called 0 that acts as an "identity element" for addition, and every integer a has an "additive inverse," which we will call $-a$.

Axioms of Multiplication.

(M1) $\forall a, b \in \mathbb{Z}, a b=b a$ (commutative)
(M2) $\forall a, b, c \in \mathbb{Z}, a(b c)=(a b) c$ (associative)
(M3) $\exists 1 \in \mathbb{Z}_{\neq 0}, \forall a \in \mathbb{Z}, 1 a=a$ (multiplicative identity exists)
Notice that elements of \mathbb{Z} do not have "multiplicative inverses". That is, we can't divide in \mathbb{Z}. So \mathbb{Z} is not quite a group under multiplication. We also need to say how addition and multiplication behave together.

Axiom of Distribution.

(D) $\forall a, b, c \in \mathbb{Z}, a(b+c)=a b+a c$

We can paraphrase these first eight properties by saying that \mathbb{Z} is a (commutative) ring. Next we will describe how arithmetic and order interact.
Axioms of Order. Define " $a<b$ " to mean " $a \leq b$ and $a \neq b$."
(O1) $\forall a, b, c \in \mathbb{Z},(a<b) \Rightarrow(a+c<b+c)$
(O2) $\forall a, b, c \in \mathbb{Z},(a<b \wedge 0<c) \Rightarrow(a c<b c)$
(O3) $0<1$
These first eleven properties tell us that \mathbb{Z} is an ordered ring. However, we have not yet defined the integers because there exist other ordered rings, for example the rational numbers \mathbb{Q} and the real numbers \mathbb{R}. To distinguish \mathbb{Z} among the ordered rings we need one final axiom. This last axiom is not obvious and it took a long time for people to realize that it is an axiom and not a theorem. It is convenient to use the notation

$$
(a \leq b):=(a<b \vee a=b)
$$

The Well-Ordering Axiom.

(WO) Suppose that $S \subseteq \mathbb{Z}$ is a non-empty set $(\exists s \in \mathbb{Z}, s \in S)$ that has a lower bound $(\exists b \in \mathbb{Z}, \forall s \in S, b \leq s)$. Then S has a least element $(\exists m \in S, \forall s \in S, m \leq s)$.

This axiom is also known as the principle of induction; we will use it a lot. Thus endeth the friendly definition.

Subtle Definition

The above definition is friendly and practical. But it is quite long! You might ask whether we can define \mathbb{Z} using fewer axioms; the answer is "Yes." The most efficient definition of \mathbb{Z} is due to Giuseppe Peano (1858-1932). His definition is efficient, but it no longer looks much like the integers.

Peano's Axioms. Let \mathbb{N} be a set equipped with an equivalence relation " $=$ " and a unary "successor" operation $S: \mathbb{N} \rightarrow \mathbb{N}$, satisfying the following four axioms:
(P1) $0 \in \mathbb{N}$ (there is an element called 0)
(P2) $\forall n \in \mathbb{N}, S(n) \neq 0$ (0 is not the successor of any natural number)
(P3) $\forall m, n \in \mathbb{N},(S(m)=S(n)) \Rightarrow(m=n)$ (S is an injective function)
(P4) Principle of Induction. If a set $K \subseteq \mathbb{N}$ of natural numbers satisfies

$$
\begin{cases}0 \in K, & (0 \text { is in } K) \\ \forall n \in \mathbb{N}, n \in K \Rightarrow S(n) \in K, & (K \text { is closed under succession) }\end{cases}
$$

then $K=\mathbb{N}$ (K is everything).
With a lot of work, one can use \mathbb{N} and S to define a set \mathbb{Z} with addition, multiplication, a total ordering, etc., and show that it has all of the desired properties. Good luck to you. I'll stick with the friendly definition.

