
Math 230 Spring 2019
Homework 5 Drew Armstrong

Problem 1. Fractions. Consider the following set of ordered pairs:

S := {(a, b) : a, b ∈ Z, b 6= 0}.

(a) Prove that the following is an equivalence relation on the set S:

(a, b) ∼ (c, d) ⇐⇒ ad = bc.

(b) Prove that the following two operations are well-defined with respect to ∼ :

(a, b)× (c, d) := (ac, bd)

(a, b) + (c, d) := (ad + bc, bd).

(a) There are three things to show:

• Reflexive. For all (a, b) ∈ S we have (a, b) ∼ (a, b) because ab = ba.
• Symmetric. Consider (a, b) and (c, d) in S such that (a, b) ∼ (c, d). By definition this

means that ad = bc. But then we also have cb = da which means that (c, d) ∼ (a, b).
• Transitive. Consider (a, b), (c, d), (e, f) ∈ S and assume that (a, b) ∼ (c, d) and

(c, d) ∼ (e, f). By definition this means that ad = bc and cf = de. But then since
d 6= 0 we have

ad = bc

(ad)f = (bc)f

(af)d = b(cf)

(af)d = b(de)

(af)d = (bd)d

af = be,

and hence (a, b) ∼ (e, f).

(b) Assume that (a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′), so that ab′ = a′b and cd′ = c′d. There are
two things to show:

• Note that (ac, bd) ∼ (a′c′, b′d′) because

(ac)(b′d′) = (ab′)(cd′) = (a′b)(c′d) = (a′c′)(bd).

• Note that (ad + bc, bd) ∼ (a′d′ + b′c′, b′d′) because

(ad + bc)(b′d′) = (ad)(b′d′) + (bc)(b′d′)

= (ab′)(dd′) + (cd′)(bb′)

= (a′b)(dd′) + (c′d)(bb′)

= (a′d′)(bd) + (b′c′)(bd)

= (a′d′ + b′c′)(bd).



�

Problem 2. Modular Arithmetic. Fix an integer n ≥ 1. We proved in class that the
following is an equivalence relation on Z, called congruence mod n:

a ∼n b ⇐⇒ n|(a− b).

Prove that addition and multiplication of integers are well-defined with respect to ∼n :

(a) For all a, b, a′, b′ ∈ Z with a ∼n a′ and b ∼n b′, prove that a + b ∼n a′ + b′.
(b) For all a, b, a′, b′ ∈ Z with a ∼n a′ and b ∼n b′, prove that ab ∼n a′b′.

(a) Assume that a ∼n a′ and b ∼n b′, so that a − a′ = nk and b − b′ = n` for some k, ` ∈ Z.
Then we have

(a + b)− (a′ + b′) = (a− a′) + (b− b′) = nk + n` = n(k + `),

which implies that a + b ∼n a′ + b′.

(b) Assume that a ∼n a′ and b ∼n b′, so that a − a′ = nk and b − b′ = n` for some k, ` ∈ Z.
Then we have

ab− a′b′ = ab + 0− a′b′

= ab + (−ab′ + ab′)− a′b′

= a(b− b′) + (a− a′)b′

= an` + nkb′

= n(a` + kb′),

and hence ab ∼n a′b′. [Remark: That was a good trick. There are other ways two solve this,
such as substituting a = nk + a′ and b = n` + b′ into ab− a′b′.] �

Problem 3. Linear Congruence Theorem. Fix the modulus n = 22. Since gcd(7, 22) = 1
we know from the Linear Congruence Theorem that the equation 7x ∼22 1 has a solution.

(a) Use the Euclidean Algorithm to find this solution.
(b) Use your answer from part (a) to solve the following linear congruences:

7a ∼22 10,

7b ∼22 11,

7c ∼22 12.

(a) In order to solve the congruence 7x ∼22 1 we consider the equation 7x+22y = z and apply
the Euclidean Algorithm:

x y z
0 1 22
1 0 7
−3 1 1

We conclude that 7(−3) + 22(1) = 1 and hence

1 ∼22 7(−3) + 22(1) ∼22 7(−3) + 0(1) ∼22 7(−3).

In other words, x ∼22 −3. We can also express this in standard form as x ∼22 19.



(b) From part (a) we know that “dividing by 7” is the same as “multiplying by 19” mod 22.
This allows us to solve the three congruences quickly:

7a ∼22 10

19 · 7a ∼22 19 · 10

1 · a ∼22 190

a ∼22 190 ∼22 14,

7b ∼22 11

19 · 7b ∼22 19 · 11

1 · b ∼22 209

b ∼22 209 ∼22 11,

7c ∼22 12

19 · 7c ∼22 19 · 12

1 · c ∼22 228

c ∼22 228 ∼22 8.

Problem 4. Fermat’s Little Theorem. In this problem you will give an induction proof
of Fermat’s Little Theorem. You may assume the following statement, which we proved in
class. For all a, b, p ∈ Z with p prime we have

(a + b)p ∼p a
p + bp.

Now fix a prime p ∈ Z and for any n ∈ Z consider the statement P (n) = “np ∼p n.”

(a) Observe that P (0) and P (1) are true.
(b) If P (n) is true, prove that P (n + 1) is also true.
(c) If P (n) is true, prove that P (−n) is also true.

(a) These statements are true because 0p = 0 and 1p = 1.

(b) Assume for induction that P (n) is true so that np ∼p n. Then from the assumption
(a + b)p ∼p a

p + bp with a = n and b = 1 we have

(n + 1)p ∼p n
p + 1p ∼p n + 1,

which means that P (n + 1) is also true.

(c) Assume that P (n) is true so that np ∼p n. Now there are two cases:

• If p is odd then we have (−n)p = (−1)np ∼p (−1)n = −n and hence P (−n) is true.
• If p is even then since p is prime we must have p = 2. In this case we observe that
n ∼2 −n for all n ∈ Z because n− (−n) = 2n. It follows that

(−n)2 = n2 ∼2 n ∼2 −n
and hence P (−n) is true. �


