Problem 1. Let $a, b \in \mathbb{Z}$. Use the axioms of \mathbb{Z} to prove the following properties:
(a) $-(-a)=a$.
(b) $a(-b)=(-a) b=-(a b)$. [Hint: Multiply both sides of $b-b=0$ by a.]
(c) $(-a)(-b)=a b$. [Hint: Combine parts (a) and (b).]
(a) By definition of negatives we have

$$
\left\{\begin{array}{c}
a+(-a)=0 \\
(-a)+(-(-a))=0
\end{array}\right\} \quad \Longrightarrow \quad a+(-a)=(-a)+(-(-a)) .
$$

Then cancelling $(-a)$ from both sides gives $a=-(-a)$.
(b) For all $a, b \in \mathbb{Z}$ we have

$$
\begin{aligned}
b+(-b) & =0 \\
a(b+(-b)) & =a 0 \\
a b+a(-b) & =0 \\
a b+a(-b) & =a b+(-(a b)) .
\end{aligned} a 0=0 \text { from class }
$$

Then cancelling $a b$ from both sides gives $a(-b)=-(a b)$. It also follows that

$$
(-a) b=b(-a)=-(b a)=-(a b)
$$

(c) Finally, combining 1 (a) and 1(b) gives

$$
\begin{align*}
(-a)(-b) & =-(a(-b)) \tag{b}\\
& =-(-(a b)) \tag{b}\\
& =a b .
\end{align*}
$$

1(a)

Problem 2. Use the axioms of \mathbb{Z} to prove the following properties:
(a) $\forall a \in \mathbb{Z},(0<a) \Leftrightarrow(-a<0)$. [Hint: Add something to both sides.]
(b) $\forall a, b, c \in \mathbb{Z},(a<b \wedge c<0) \Rightarrow(b c<a c)$. [Hint: Use 2(a) and 1(b).]
(c) $\forall a, b \in \mathbb{Z},(a \neq 0 \wedge b \neq 0) \Rightarrow(a b \neq 0)$. [Hint: There are 4 cases.]
(d) Multiplicative Cancellation. $\forall a, b, c \in \mathbb{Z},(a b=a c \wedge a \neq 0) \Rightarrow(b=c)$. [Hint: If $a b=a c$ then $a(b-c)=0$. Use the contrapositive of $2(c)$.
(a) First suppose that $0<a$. Then adding $-a$ to both sides gives

$$
\begin{array}{rlr}
0 & <a & \\
0+(-a) & <a+(-a) & \text { axiom (O1) } \\
-a & <0 .
\end{array}
$$

Conversely, suppose that $-a<0$. Then adding a to both sides gives

$$
\begin{aligned}
-a & <0 \\
-a+a & <0+a \\
0 & <a .
\end{aligned}
$$

(b) We want to prove that $(a<b \wedge c<0) \Rightarrow(b c<a c)$. So suppose that $a<b$ and $c<0$. From 2(a) this implies that $0<-c$ and then axiom (O2) and Problem 1(c) give

$$
\begin{array}{lr}
a(-c)<b(-c) & \text { axiom (O2) } \\
-(a c)<-(b c) & 1(\mathrm{c}) \tag{c}
\end{array}
$$

Finally, we add $a c+b c$ to both sides to obtain

$$
\begin{aligned}
-(a c) & <-(b c) \\
-(a c)+a c+b c & <-(b c)+b c+a c \\
0+b c & <0+a c \\
b c & <a c .
\end{aligned}
$$

(c) We want to prove that $(a \neq 0 \wedge b \neq 0) \Rightarrow(a b \neq 0)$. So assume that $a \neq 0$ and $b \neq 0$. From the law of trichotomy there are four cases:

- Case 1. If $0<a$ and $0<b$ then (O2) gives $0<a b$, hence $a b \neq 0$.
- Case 2. If $0<a$ and $b<0$ then (O2) gives $a b<0$, hence $a b \neq 0$.
- Case 3. If $a<0$ and $0<b$ then (O2) gives $a b<0$, hence $a b \neq 0$.
- Case 4. If $a<0$ and $b<0$ then 2(b) gives $0<a b$, hence $a b \neq 0$.

In any case we conclude that $a b \neq 0$. For the purpose of $2(\mathrm{~d})$ below, let me state this result in a logically equivalent form:

$$
(a b=0 \wedge a \neq 0) \Rightarrow(b=0)
$$

(d) We want to prove that $(a b=a c \wedge a \neq 0) \Rightarrow(b=c)$. So assume that $a b=a c$ and $a \neq 0$. Then we have

$$
\begin{aligned}
a b & =a b \\
a b-a c & =0 \\
a(b-c) & =0 .
\end{aligned}
$$

Finally, since $a \neq 0$, part 2(c) implies that $(b-c)=0$ and hence $b=c$.

Problem 3. For all $a \in \mathbb{Z}$ we assume that $\sqrt{a} \in \mathbb{R}$ exists. In this problem you will show that

$$
\sqrt{a} \notin \mathbb{Z} \Rightarrow \sqrt{a} \notin \mathbb{Q} .
$$

(a) Assume that $\sqrt{a} \notin \mathbb{Z}$. Prove that there exists $m \in \mathbb{Z}$ such that $m-1<\sqrt{a}<m$. [Hint: Let $S=\{n \in \mathbb{Z}: \sqrt{a}<n\}$ and use Well-Ordering.]
(b) Now assume for contradiction that $\sqrt{a} \in \mathbb{Q}$ and consider the set $T:=\{n \geq 1: n \sqrt{a} \in$ $\mathbb{Z}\}$. Use Well-Ordering to show that this set has a least element $d \in T$. But then show that $d(\sqrt{a}-m+1)$ is a smaller element of T. Contradiction.

Proof. (a) Assume that $\sqrt{a} \notin \mathbb{Z}$ and consider the set $S=\{n \in \mathbb{Z}: \sqrt{a}<n\}$. This set is non-empty (we don't really have an axiom to prove this because we never defined the real numbers) and bounded below (by the number 0 ; again we can't really prove this), so the Well-Ordering Principle says that there exists a smallest element $m \in S$. By minimality of m we must have $m-1 \notin S$, which implies that $\sqrt{a} \nless m-1$, or in other words $m-1 \leq \sqrt{a}$. But since $\sqrt{a} \notin \mathbb{Z}$ we know that $m-1 \neq \sqrt{a}$ and hence $m-1<\sqrt{a}$.
(b) Now consider the set $T=\{n \geq 1: n \sqrt{a} \in \mathbb{Z}\}$ and assume for contradiction that $\sqrt{a} \in \mathbb{Q}$. This means that $\sqrt{a}=p / q$ for some integers $p, q \in \mathbb{Z}$ with $q \geq 1$. But then $q \sqrt{a}=p \in \mathbb{Z}$ and we conclude that $q \in T$. Since T is non-empty (it contains q) and is bounded below (by 1), the Well-Ordering Principle says that there exists a smallest element $d \in T$.

Now we will obtain a contradiction by producing a strictly smaller element of T. Recall from part (a) that there exists an integer $m \in \mathbb{Z}$ with $m-1<\sqrt{a}<m$. Applying axioms (O1) and (O2) gives

$$
\begin{array}{rlc}
m-1 & <\sqrt{a} & <m \\
0 & <\sqrt{a}-m+1 & <1 \\
0 & <d(\sqrt{a}-m+1) & <d .
\end{array}
$$

But note that

$$
d(\sqrt{a}-m+1)=d \sqrt{a}-d(m-1) \in \mathbb{Z} \quad \text { because } \quad d \sqrt{a} \in \mathbb{Z}
$$

Hence $d(\sqrt{a}-m+1)$ is a positive integer that is strictly smaller than d. Finally, to show that $d(\sqrt{a}-m+1)$ is an element of T we observe that

$$
d(\sqrt{a}-m+1) \sqrt{a}=d a-(m-1) d \sqrt{a} \in \mathbb{Z} \quad \text { because } \quad d \sqrt{a} \in \mathbb{Z} .
$$

Problem 4. Let $a, b, c \in \mathbb{Z}$. Prove the following properties of divisibility:
(a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$ then for all $x, y \in \mathbb{Z}$ we have $a \mid(b x+c y)$.
(c) If $a \mid b$ and $b \mid a$ then $a= \pm b$. [Hint: Use 2(d).]
(d) Bonus Material. If $a \mid b$ and $b \neq 0$ then $|a| \leq|b|$.
(a) Suppose that $a \mid b$ and $b \mid c$. By definition this means that $a k=b$ and $b \ell=c$ for some integers $k, \ell \in \mathbb{Z}$. But then we have

$$
c=b \ell=(a k) \ell=a(k \ell),
$$

which implies that $a \mid c$ because $k \ell \in \mathbb{Z}$.
(b) Suppose that $a \mid b$ and $a \mid c$. By definition this means that $a k=b$ and $a \ell=c$ for some integers $k, \ell \in \mathbb{Z}$. Then for all integers $x, y \in \mathbb{Z}$ we have

$$
b x+c y=(a k) x+(a \ell) y=a(k x)+a(\ell y)=a(k x+\ell y),
$$

which implies that $a \mid(b x+c y)$ becuase $k x+\ell y \in \mathbb{Z}$.
(c) Suppose that $a \mid b$ and $b \mid a$. By definition this means that $a k=b$ and $b \ell=a$ for some integers $k, \ell \in \mathbb{Z}$. If $a=0$ then there is nothing to prove, so suppose that $a \neq 0$. Then from

Problem 2(d) we have

$$
\begin{aligned}
a & =b \ell \\
a & =(a k) \ell \\
a & =a(k \ell) \\
\not \alpha 1 & =\not \subset(k \ell) \\
1 & =k \ell .
\end{aligned}
$$

Finally, I claim that the only solutions are $k=\ell=1$ (hence $a=b$) and $k=\ell=-1$ (hence $a=-b$). You don't need to prove this, but I'll provide a proof. The proof will use the absolute value notation to save space. Recall that the absolute value is defined by

$$
|a|:= \begin{cases}a & \text { if } a>0 \\ 0 & \text { if } a=0 \\ -a & \text { if } a<0\end{cases}
$$

and satisfies $|a b|=|a| \cdot|b|$ for all $a, b \in \mathbb{Z}$. [This result follows from the proof of $2(\mathrm{c})$.]
Proof. If $1=k \ell$ then $1=|1|=|k \ell|=|k| \cdot|\ell|$. I claim that $|k|=1$ and hence also $|\ell|=1$. To prove this, assume for contradiction that $|k| \neq 1$. Then there are two cases:

- Case 1. If $|k|<1$ then since $|k|>0$ we obtain a contradiction to the fact proved in class that there are no integers strictly between 0 and 1 .
- Case 2. If $|k|>1$ then multiplying both sides by the positive number $|\ell|$ gives $1=|k| \cdot|\ell|>|\ell|$. But now $|\ell|$ is an integer strictly between 0 and 1 . Contradiction.
(d) Bonus Material. Let $a \mid b$ and $b \neq 0$. By definition we have $a k=b$ for some $k \in \mathbb{Z}$ and since $b \neq 0$ we must have $a \neq 0$ and $k \neq 0$. Since there are no integers between 0 and 1 this implies that $|k| \geq 1$ and then multiplying both sides by the positive integer $|a|$ gives

$$
\begin{aligned}
1 & \leq|k| \\
|a| & \leq|a| \cdot|k| \\
|a| & \leq|a k| \\
|a| & \leq|b| .
\end{aligned}
$$

[Remark: We already used this result in class when we proved the uniqueness of quotients and remainders.]

