Fun With Axioms

Problem 1. Let $a, b \in \mathbb{Z}$. Use the axioms of \mathbb{Z} to prove the following properties:
(a) $-(-a)=a$.
(b) $a(-b)=(-a) b=-(a b)$. [Hint: Multiply both sides of $b-b=0$ by a.]
(c) $(-a)(-b)=a b$. [Hint: Combine parts (a) and (b).]

Problem 2. Use the axioms of \mathbb{Z} to prove the following properties:
(a) $\forall a \in \mathbb{Z},(0<a) \Leftrightarrow(-a<0)$. [Hint: Add something to both sides.]
(b) $\forall a, b, c \in \mathbb{Z},(a<b \wedge c<0) \Rightarrow(b c<a c)$. [Hint: Use 2(a) and 1(b).]
(c) $\forall a, b \in \mathbb{Z},(a \neq 0 \wedge b \neq 0) \Rightarrow(a b \neq 0)$. [Hint: There are 4 cases.]
(d) Multiplicative Cancellation. $\forall a, b, c \in \mathbb{Z},(a b=a c \wedge a \neq 0) \Rightarrow(b=c)$. [Hint: If $a b=a c$ then $a(b-c)=0$. Use the contrapositive of $2(c)$.

Problem 3. For all $a \in \mathbb{Z}$ we assume that $\sqrt{a} \in \mathbb{R}$ exists. In this problem you will show that

$$
\sqrt{a} \notin \mathbb{Z} \Rightarrow \sqrt{a} \notin \mathbb{Q}
$$

(a) Assume that $\sqrt{a} \notin \mathbb{Z}$. Prove that there exists $m \in \mathbb{Z}$ such that $m-1<\sqrt{a}<m$. [Hint: Let $S=\{n \in \mathbb{Z}: \sqrt{a}<n\}$ and use Well-Ordering.]
(b) Now assume for contradiction that $\sqrt{a} \in \mathbb{Q}$ and consider the set $T:=\{n \geq 1: n \sqrt{a} \in$ $\mathbb{Z}\}$. Use Well-Ordering to show that this set has a least element $d \in T$. But then show that $d(\sqrt{a}-m+1)$ is a smaller element of T. Contradiction.

Problem 4. Let $a, b, c \in \mathbb{Z}$. Prove the following properties of divisibility:
(a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$ then for all $x, y \in \mathbb{Z}$ we have $a \mid(b x+c y)$.
(c) If $a \mid b$ and $b \mid a$ then $a= \pm b$. [Hint: Use 2(d).]

