Fun With Axioms

Problem 1. Let $a, b \in \mathbb{Z}$. Use the axioms of \mathbb{Z} to prove the following properties:

- (a) -(-a) = a.
- (b) a(-b) = (-a)b = -(ab). [Hint: Multiply both sides of b b = 0 by a.]
- (c) (-a)(-b) = ab. [Hint: Combine parts (a) and (b).]

Problem 2. Use the axioms of \mathbb{Z} to prove the following properties:

- (a) $\forall a \in \mathbb{Z}, (0 < a) \Leftrightarrow (-a < 0)$. [Hint: Add something to both sides.]
- (b) $\forall a, b, c \in \mathbb{Z}, (a < b \land c < 0) \Rightarrow (bc < ac)$. [Hint: Use 2(a) and 1(b).]
- (c) $\forall a, b \in \mathbb{Z}, (a \neq 0 \land b \neq 0) \Rightarrow (ab \neq 0)$. [Hint: There are 4 cases.]
- (d) Multiplicative Cancellation. $\forall a, b, c \in \mathbb{Z}, (ab = ac \land a \neq 0) \Rightarrow (b = c)$. [Hint: If ab = ac then a(b c) = 0. Use the contrapositive of 2(c).]

Problem 3. For all $a \in \mathbb{Z}$ we assume that $\sqrt{a} \in \mathbb{R}$ exists. In this problem you will show that $\sqrt{a} \notin \mathbb{Z} \Rightarrow \sqrt{a} \notin \mathbb{Q}$.

- (a) Assume that $\sqrt{a} \notin \mathbb{Z}$. Prove that there exists $m \in \mathbb{Z}$ such that $m 1 < \sqrt{a} < m$. [Hint: Let $S = \{n \in \mathbb{Z} : \sqrt{a} < n\}$ and use Well-Ordering.]
- (b) Now assume for contradiction that $\sqrt{a} \in \mathbb{Q}$ and consider the set $T := \{n \ge 1 : n\sqrt{a} \in \mathbb{Z}\}$. Use Well-Ordering to show that this set has a least element $d \in T$. But then show that $d(\sqrt{a} m + 1)$ is a smaller element of T. Contradiction.

Problem 4. Let $a, b, c \in \mathbb{Z}$. Prove the following properties of divisibility:

- (a) If a|b and b|c then a|c.
- (b) If a|b and a|c then for all $x, y \in \mathbb{Z}$ we have a|(bx + cy).
- (c) If a|b and b|a then $a = \pm b$. [Hint: Use 2(d).]