
Math 230 Spring 2019
Homework 2 Drew Armstrong

Problem 1. Let P and Q be any mathematical statements.

(a) Use a truth table to prove de Morgan’s Laws:

¬(P ∨Q) = (¬P ∧ ¬Q) and ¬(P ∧Q) = (¬P ∨ ¬Q).

(b) Use a truth table to verify that (P ⇒ Q) = (¬P ∨Q).
(c) Use part (b) to prove the contrapositive principle:

(P ⇒ Q) = (¬Q⇒ ¬P ).

Do not use a truth table.

(a) Here is a truth table proving that ¬(P ∨Q) = ¬P ∧ ¬Q:

P Q P ∨Q ¬(P ∨Q) ¬P ¬Q ¬P ∧ ¬Q
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

And here is a truth table proving that ¬(P ∧Q) = ¬P ∨ ¬Q:

P Q P ∧Q ¬(P ∧Q) ¬P ¬Q ¬P ∨ ¬Q
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

(b) And here is a truth table proving that (P ⇒ Q) = (¬P ) ∨Q:

P Q P ⇒ Q ¬P ¬P ∨Q
T T T F T
T F F F F
F T T T T
F F T T T

(c) Proof. From part (b) we know that (A ⇒ B) = ¬A ∨ B for all statements A and B.
Substituting A = P and B = Q gives

(P ⇒ Q) = ¬P ∨Q,

and substituting A = ¬Q and B = ¬P gives

(¬Q⇒ ¬P ) = ¬(¬Q) ∨ (¬P ) = Q ∨ ¬P.
Since ¬P ∨Q = Q ∨ ¬P we conclude that (P ⇒ Q) = (¬Q⇒ ¬P ). �



Problem 2. Let P,Q,R be any mathematical statements.

(a) Use parts (a) and (b) of Problem 1 to verify that

P ⇒ (Q ∨R) = (P ∧ ¬Q)⇒ R.

Again, do not use a truth table. [Hint: You can assume that ¬(¬A) = A and A∨ (B∨
C) = (A ∨B) ∨ C for any statements A,B,C.]

(b) Use the logical principle from part (a) to prove that the following silly statement is
true for all integers m,n ∈ Z:

“ If m is odd, then either n is even or mn is odd (or both). ”

[Hint: What are the statements P,Q,R in this case?]

(a) Proof. Recall from 1(b) that we have (A ⇒ B) = ¬A ∨ B for all statements A and B.
Substituting A = P and B = Q ∨R gives

P ⇒ (Q ∨R) = ¬P ∨ (Q ∨R).

On the other hand, substiting A = (P ∧¬Q) and B = R and then using de Morgan’s law gives

(P ∧ ¬Q)⇒ R = ¬(P ∧ ¬Q) ∨R 1(b)

= (¬P ∨ ¬¬Q) ∨R 1(a)

= (¬P ∨Q) ∨R assumption

= ¬P ∨ (Q ∨R) assumption

= P ⇒ (Q ∨R). from above

�

(b) Let m,n ∈ Z and consider the following statements:

P = “m is odd, ”

Q = “n is even, ”

R = “‘mn is odd.”

I claim that P ⇒ (Q ∨ R). Proof. By part (a) it is enough to prove that (P ∧ ¬Q) ⇒ R. In
other words, we will prove that

“ If m is odd and n is odd, then mn is odd. ”

So let us assume that m and n are both odd. By definition this means that there exist integers
k, ` ∈ Z such that m = 2k + 1 and n = 2` + 1. But then we have

mn = (2k + 1)(2` + 1)

= 4k` + 2k + 2` + 1

= 2(2k` + k + `) + 1

= 2(some integer) + 1.

By definition this means that mn is odd. �

Problem 3. In this problem you will prove that
√

5 is irrational.

(a) There are four different ways that an integer can be “not a multiple of 5.” List them.



(b) Use part (a) and the contrapositive to prove for all integers n that

(n2 is a multiple of 5)⇒ (n is a multiple of 5).

[Hint: This will be a case-by-case proof.]
(c) Use part (b) and proof by contradiction to show that

√
5 is not a fraction of whole

numbers. [Hint: Try to mimic the proof from class as closely as possible.]

(a) If n ∈ Z is not a multiple of 5 then one of the following cases holds:

• n = 5k + 1 for some k ∈ Z,
• n = 5k + 2 for some k ∈ Z,
• n = 5k + 3 for some k ∈ Z,
• n = 5k + 4 for some k ∈ Z.

(b) For all n ∈ Z we will prove the statement

(n is not a multiple of 5)⇒ (n2 is not a multiple of 5).

Proof. Assume that n is not a multiple of 5. Then from part (a) there are four cases.

• If n = 5k + 1 for some k ∈ Z then we have

n2 = (5k + 1)2 = 25k2 + 10k + 1 = 5(5k2 + 2k) + 1.

• If n = 5k + 2 for some k ∈ Z then we have

n2 = (5k + 2)2 = 25k2 + 20k + 4 = 5(5k2 + 4k) + 4.

• If n = 5k + 3 for some k ∈ Z then we have

n2 = (5k + 3)2 = 25k2 + 30k + 9 = 5(5k2 + 6k + 1) + 4.

• If n = 5k + 4 for some k ∈ Z then we have

n2 = (5k + 4)2 = 25k2 + 40k + 16 = 5(5k2 + 8k + 3) + 1.

In any case, we conclude that n2 is not a multiple of 5. �

(c) Let us assume for contradiction that
√

5 is a fraction of whole numbers. Then we can write√
5 = a/b for some integers a, b ∈ Z in “lowest terms,” i.e., where a and b have no common

factors except for ±1. Multiply both sides by b and then square to obtain
√

5 = a/b
√

5 · b = a

5b2 = a2.

Since a2 is a multiple of 5, part (b) tells us that a is also a multiple of 5, say a = 5k. Then
substituting and canceling 5 from both sides gives

5b2 = a2

5b2 = (5k)2

�5b
2 = �5 · 5k2

b2 = 5k2.

Then since b2 is a multiple of 5, part (b) tells us that b is also a multiple of 5, say b = 5`. But
this contradicts the fact that a and b have no common factors. This contradiction shows that√

5 is not a fraction of whole numbers. �



Problem 4. For any integer n ∈ Z consider the following mathematical statement:

P (n) := “12 + 22 + 32 + · · ·+ n2 =
1

6
n(n + 1)(2n + 1).”

(a) Verify that the statements P (1), P (2) and P (3) are all true.
(b) Now fix an arbitrary positive integer k ≥ 1 and assume for induction that the

statement P (k) is true. In this case prove that the statement P (k + 1) is also true.
(c) What do you conclude from this?

(a) Note that the following statements are true:

P (1) = “12 =
1

6
(1)(2)(3),′′

P (2) = “12 + 22 =
1

6
(2)(3)(5),′′

P (3) = “12 + 22 + 32 =
1

6
(3)(4)(7).′′

(b) Now fix an arbitrary integer k ≥ 1 and assume for induction that P (k) is a true
statement. In other words, we assume that

12 + 22 + · · ·+ k2 =
1

6
k(k + 1)(2k + 1).

In this case we want to prove that P (k + 1) is also true. In other words, we want to prove

12 + 22 + · · ·+ (k + 1)2 =
1

6
(k + 1)((k + 1) + 2)(2(k + 1) + 1) =

1

6
(k + 1)(k + 2)(2k + 3).

To see that this is true, observe that

12 + 22 + · · ·+ (k + 1)2 = (12 + 22 + · · · k2) + (k + 1)2

=
1

6
k(k + 1)(2k + 1) + (k + 1)2 by assumption

=
1

6
(k + 1) [k(2k + 1) + 6(k + 1)]

=
1

6
(k + 1)

[
2k2 + k + 6k + 1

]
=

1

6
(k + 1)

[
2k2 + 7k + 1

]
=

1

6
(k + 1)(k + 2)(2k + 3).

�

(c) By the Principle of Induction, we conclude that P (n) is a true statement for all n ≥ 1.

[Remark: Since 12 + 22 + · · ·+ n2 is always a whole number, it follows from this result that

n(n + 1)(2n + 1) is always a multiple of 6.

That’s a bit surprising.]


