Math 230 Fall 2018
Exam 3 — Tues Dec 4 Drew Armstrong

No communication devices or notes are allowed. Any student caught cheating will receive a
score of zero. Fach of the 4 problems is worth 6 points, for a total of 24 points.

Problem 1.

(a) Use the Extended Euclidean Algorithmn to compute the inverse of 10 mod 17.

Consider the set of triples (k,#,m) € Z3 such that 10k + 17/ = m. Beginning with
(0,1,17) and (1,0, 10) we have the following table:

k { |m
0 1 |17
1 0 |10
1] 1 7
2 |—-113
-5 3 |1

It follows that 10 - (—5) = 1 mod 17 and hence 10~ = —5 = 12 mod 17.
(b) Use your answer from (a) to solve the equation 10z = 8 mod 17.

Dividing by 10 is the same as multiplying by 12. Thus we have

10z =8
r=28-12

r = 96

xz =11 mod 17.

616

(c) Compute 16*° mod 17. You may assume that Fermat’s Little Theorem is true.

Fermat’s Little Theorem says that a?~! = 1 mod p for all a,p € Z with p prime and
p1ta. Taking a = 16 and p = 17 gives

16 = 1 mod 17.

Problem 2. Let ~ be an equivalence relation on a set S.

(a) Accurately state the three axioms that ~ must satisfy.

(E1) Vx € S,z ~ z,
(E2) Va,y € S,z ~y =y~ x,
(E3) Va,y,z€ S, (x ~yANy~2z)=x~ 2.
(b) For all z € S let [x] :={z € S : x ~ z}. Prove that [x] = [y] implies x ~ y.

Assume that [z] = [y]. Then from (E1) we have y € [y] = [z], which implies that z ~ y.



(c¢) Continuing from (b), prove that x ~ y implies [z] = [y].

Assume that = ~ y, so (E2) implies y ~ z. To prove that [z] C [y], suppose that
z € [z], which means that x ~ z. Then from (E3) we have (y ~x Az ~2) =y ~ 2
and hence z € [y]. To prove that [y] C [z], suppose that z € [y], which means that
y ~ z. Then from (E3) we have (x ~y Ay~ z) = x ~ z and hence z € [z].

Problem 3. Fix an integer n € Z and for all integers a,b € Z consider the relation

ar~pb <= nl(a—0b).

(a) Prove that ~, is an equivalence relation on Z.

(E1) For all a € Z we have n-0 = (a — a), hence n|(a — a), hence a ~, a.

(E2) Consider a,b € Z with a ~, b, so that a — b = nk for some k € Z. Then
(b — a) = n(—k) implies that n|(b — a) and hence b ~,, a.

(E3) Consider a,b,c € Z with a ~, b and b ~,, c¢. This means that a —b = nk and
b — ¢ = nt for some ¢ € Z. But then we have

a—c=(a—b)+ (b—c)=nk+nl =n(k+1),
which implies that n|(a — ¢), hence a ~,, c.

(b) For all a € Z define the set [a], = {¢ € Z : a ~, c}. Prove that [a], = [d/], and
[b],, = [V']5y imply [a + b]n = [a" + V']n.

Assume that [a], = [d'],, and [b],, = [b/],,. From Problem 2(b) and the definition of ~,,
this means that a — a’ = nk and b — b’ = nf for some k, /¢ € Z. But then we have
(a+b)—(d+b)=(a—d)+(b=V)=nk+nl =n(k+1),

which implies that (a +b) ~, (a’+b"). Then Problem 2(c) implies [a + b],, = [@’ +V],.
(c) Continuing from (b), prove that [a], = [d/], and [b],, = [b'],, imply [ab], = [a'V],.

Assume that [a], = [d'],, and [b],, = [b'],,. From Problem 2(b) and the definition of ~,,

this means that a — a’ = nk and b — b’ = nf for some k, ¢ € Z. But then we have

ab—a't) = ab — (a — nk)(b — nl)

= ab — (ab — anl — bnk + n’kl)
= n(al + bk — nk?),

which implies that ab ~,, a’t’. Then Problem 2(c) implies [ab],, = [a'b'],,.

Problem 4. Fix integers a,b,n € Z and for all k € Z consider the following statement:

P(k) = “[a*] = (]



(a)

Accurately state the Principle of Induction.

Let P(n) be a statement depending on an integer n € Z. Suppose that

e P(b) is true for some specific b € Z, and
e for all n > b we have P(n) = P(n+1).

Then it follows that P(n) is true for all n > b.

Assuming that P(1) is true, use induction to prove that P(k) is true for all k£ > 1.
[Hint: You can use the result of Problem 3(c).]

Let [a], = [b]n, i.e., P(1) is true. Now assume for induction that [a*], = [b¥],, i.e.,
P(k) is true. Then since [a], = [b],, and [a¥],, = [b¥],, it follows from Problem 3(c) that
[a- ak]n =[b- bk]n
[ak—i-l]n — [bk+1]n.
In other words, P(k+1) is true. It follows by induction that P(k) is true for all k£ > 1.
Alternate Proof. For all £k > 1 note that
(a® —b%) = (a —b)(a* L+ a* 20+ - 4 ab 2 F 0.
It follows that n|(a — b) implies n|(a® — b*).



Math 230 D Fall 2015
Exam 3 — Mon Dec 7 Drew Armstrong

There are 4 problems, worth 6 points each, for a total of 24 points. This is a closed book
test. Anyone caught cheating will receive a score of zero.

Problem 1. Hand Computations.

(a) Use Pascal’s Triangle to compute the expansion of (1 + z)°.

Here is Pascal’s Triangle:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

Thus we conclude that

(1+2)5 =1+ 52 + 102% + 1023 + 52 + 2°.

(b) Compute the standard form of [3,7—:1,}7

[JLL—[””'W = [35]; = [0]r.

T 3-2-1-4.3271,
(c) Compute the standard form of [26]7.
27 = [2°]7 - [2°)7 = [8]7 - [8]r = [L]7 - [L]7 = [1].

Problem 2. Modular Arithmetic. Let 0 # n € Z. Define the set Z/n := {[a}, : a € Z}
with equivalence relation [a],, = [b],, < n|(a — b) and algebraic operations

[aln, + [b]n == [a + b]n and [aly, - [b]y, = [ab]y.
(You can assume that this is all well-defined.) Recall that Z/n is a ring with additive
identity element [0],, and multiplicative identity element [1],,.

(a) If ged(a,n) = 1, prove that the element [a], € Z/n has a multiplicative inverse.
[You can assume Bézout’s Lemma.|

Proof. Since ged(a,n) = 1, Bézout’s Lemma says that there exist z,y € Z with
ax + ny = 1. Then we have

l—ax=ny = nljlax—1) = [l],=laz]p = [a]n " [Z]n.
It follows that the inverse exists:

,1]

[ |n = [2]n.



(b) If the element [a], € Z/n has a multiplicative inverse, prove that there exist x,y € Z
with ax + ny = 1.

Proof. Suppose there exists € Z with [a],, - [z], = [1],,. Then we have
1], =laz], = n|(l—ax) = 1—ax = ny for some y € Z.

(c) If there exist x,y € Z with ax + ny = 1, prove that ged(a,n) = 1.

Proof. Suppose that ax + ny = 1 for some z,y € Z and let d € Z be any common
divisor of a and b, say a = dk and b = d¢ for some k, ¢ € Z. Then we have

1 =az+by = (dk)z + (dl)y = d(kz + ('y),
which implies that d = +1. It follows that the greatest common divisor is 1. n

Problem 3. Principle of Induction.

(a) Accurately state the Principle of Induction.

Let P(n) be a statement depending on an integer n € Z. Suppose that

e P(b) is true for some specific b € Z, and
o for all n > b we have P(n) = P(n+1).

Then it follows that P(n) is true for all n > b.

(b) For all integers n > 2 define the statement P(n) := “1 +2+---4+n = W”.
Prove that P(2) is a true statement.
2-3
142=——
+ 2

(c) Now fix an integer k£ > 2 and assume for induction that P(k) is true. In this case,
prove that P(k + 1) is also true.

Proof. Fix an integer k > 2 and assume for induction that P(k) is true. In other

words, assume that
k(k+1)

L+24 k==

Then it follows that
1+24-+(k+1)=0+2++k)+(k+1)
k(k+1)

==~ +E+

(B )@

k+2)k+1)

(k+1)+1)
5 .
In other words, P(k + 1) is true. O

—~

(
(k:+ 1)(




Problem 4. Binomial Theorem.

(a) Accurately state the Binomial Theorem.

For all integers a,b,n € Z with n > 0 we have

(b) Let k,p € Z with p prime and 1 < k < p — 1. In this case you can assume that p
divides the integer ﬁik)!' Use this fact together with the Binomial Theorem to
prove that for all a,b € Z we have [(a + b)P] = [a¥ + b] .

Proof. When 1 < k < p we have assumed that

7], =0

Then using the Binomial Theorem gives
p—1

p! kpp—k
P
a +,§:1k!(p !abp + 0P

(a+ b)), = -




