No communication devices or notes are allowed. Any student caught cheating will receive a score of zero. Each of the 4 problems is worth 6 points, for a total of 24 points.

Problem 1.

(a) Use the Extended Euclidean Algorithmn to compute the inverse of $10 \bmod 17$.

Consider the set of triples $(k, \ell, m) \in \mathbb{Z}^{3}$ such that $10 k+17 \ell=m$. Beginning with $(0,1,17)$ and $(1,0,10)$ we have the following table:

k	ℓ	m
0	1	17
1	0	10
-1	1	7
2	-1	3
-5	3	1

It follows that $10 \cdot(-5)=1 \bmod 17$ and hence $10^{-1}=-5=12 \bmod 17$.
(b) Use your answer from (a) to solve the equation $10 x=8 \bmod 17$.

Dividing by 10 is the same as multiplying by 12 . Thus we have

$$
\begin{aligned}
10 x & =8 \\
x & =8 \cdot 12 \\
x & =96 \\
x & =11 \bmod 17 .
\end{aligned}
$$

(c) Compute $16^{16} \bmod 17$. You may assume that Fermat's Little Theorem is true.

Fermat's Little Theorem says that $a^{p-1}=1 \bmod p$ for all $a, p \in \mathbb{Z}$ with p prime and $p \nmid a$. Taking $a=16$ and $p=17$ gives

$$
16^{16}=1 \bmod 17
$$

Problem 2. Let \sim be an equivalence relation on a set S.
(a) Accurately state the three axioms that \sim must satisfy.
(E1) $\forall x \in S, x \sim x$,
(E2) $\forall x, y \in S, x \sim y \Rightarrow y \sim x$,
(E3) $\forall x, y, z \in S,(x \sim y \wedge y \sim z) \Rightarrow x \sim z$.
(b) For all $x \in S$ let $[x]:=\{z \in S: x \sim z\}$. Prove that $[x]=[y]$ implies $x \sim y$.

Assume that $[x]=[y]$. Then from (E1) we have $y \in[y]=[x]$, which implies that $x \sim y$.
(c) Continuing from (b), prove that $x \sim y$ implies $[x]=[y]$.

Assume that $x \sim y$, so (E2) implies $y \sim x$. To prove that $[x] \subseteq[y]$, suppose that $z \in[x]$, which means that $x \sim z$. Then from (E3) we have $(y \sim x \wedge x \sim z) \Rightarrow y \sim z$ and hence $z \in[y]$. To prove that $[y] \subseteq[x]$, suppose that $z \in[y]$, which means that $y \sim z$. Then from (E3) we have $(x \sim y \wedge y \sim z) \Rightarrow x \sim z$ and hence $z \in[x]$.

Problem 3. Fix an integer $n \in \mathbb{Z}$ and for all integers $a, b \in \mathbb{Z}$ consider the relation

$$
a \sim_{n} b \quad \Longleftrightarrow \quad n \mid(a-b) .
$$

(a) Prove that \sim_{n} is an equivalence relation on \mathbb{Z}.
(E1) For all $a \in \mathbb{Z}$ we have $n \cdot 0=(a-a)$, hence $n \mid(a-a)$, hence $a \sim_{n} a$.
(E2) Consider $a, b \in \mathbb{Z}$ with $a \sim_{n} b$, so that $a-b=n k$ for some $k \in \mathbb{Z}$. Then $(b-a)=n(-k)$ implies that $n \mid(b-a)$ and hence $b \sim_{n} a$.
(E3) Consider $a, b, c \in \mathbb{Z}$ with $a \sim_{n} b$ and $b \sim_{n} c$. This means that $a-b=n k$ and $b-c=n \ell$ for some $\ell \in \mathbb{Z}$. But then we have

$$
a-c=(a-b)+(b-c)=n k+n \ell=n(k+\ell),
$$

which implies that $n \mid(a-c)$, hence $a \sim_{n} c$.
(b) For all $a \in \mathbb{Z}$ define the set $[a]_{n}=\left\{c \in \mathbb{Z}: a \sim_{n} c\right\}$. Prove that $[a]_{n}=\left[a^{\prime}\right]_{n}$ and $[b]_{n}=\left[b^{\prime}\right]_{n}$ imply $[a+b]_{n}=\left[a^{\prime}+b^{\prime}\right]_{n}$.

Assume that $[a]_{n}=\left[a^{\prime}\right]_{n}$ and $[b]_{n}=\left[b^{\prime}\right]_{n}$. From Problem 2(b) and the definition of \sim_{n} this means that $a-a^{\prime}=n k$ and $b-b^{\prime}=n \ell$ for some $k, \ell \in \mathbb{Z}$. But then we have

$$
(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=n k+n \ell=n(k+\ell),
$$

which implies that $(a+b) \sim_{n}\left(a^{\prime}+b^{\prime}\right)$. Then Problem 2(c) implies $[a+b]_{n}=\left[a^{\prime}+b^{\prime}\right]_{n}$.
(c) Continuing from (b), prove that $[a]_{n}=\left[a^{\prime}\right]_{n}$ and $[b]_{n}=\left[b^{\prime}\right]_{n}$ imply $[a b]_{n}=\left[a^{\prime} b^{\prime}\right]_{n}$.

Assume that $[a]_{n}=\left[a^{\prime}\right]_{n}$ and $[b]_{n}=\left[b^{\prime}\right]_{n}$. From Problem 2(b) and the definition of \sim_{n} this means that $a-a^{\prime}=n k$ and $b-b^{\prime}=n \ell$ for some $k, \ell \in \mathbb{Z}$. But then we have

$$
\begin{aligned}
a b-a^{\prime} b^{\prime} & =a b-(a-n k)(b-n \ell) \\
& =a \zeta-\left(\propto b-a n \ell-b n k+n^{2} k \ell\right) \\
& =n(a \ell+b k-n k \ell),
\end{aligned}
$$

which implies that $a b \sim_{n} a^{\prime} b^{\prime}$. Then Problem 2(c) implies $[a b]_{n}=\left[a^{\prime} b^{\prime}\right]_{n}$.

Problem 4. Fix integers $a, b, n \in \mathbb{Z}$ and for all $k \in \mathbb{Z}$ consider the following statement:

$$
P(k)="\left[a^{k}\right]_{n}=\left[b^{k}\right]_{n} . "
$$

(a) Accurately state the Principle of Induction.

Let $P(n)$ be a statement depending on an integer $n \in \mathbb{Z}$. Suppose that
$\{\bullet P(b)$ is true for some specific $b \in \mathbb{Z}$, and
$\{$ - for all $n \geq b$ we have $P(n) \Rightarrow P(n+1)$.
Then it follows that $P(n)$ is true for all $n \geq b$.
(b) Assuming that $P(1)$ is true, use induction to prove that $P(k)$ is true for all $k \geq 1$. [Hint: You can use the result of Problem 3(c).]

Let $[a]_{n}=[b]_{n}$, i.e., $P(1)$ is true. Now assume for induction that $\left[a^{k}\right]_{n}=\left[b^{k}\right]_{n}$, i.e., $P(k)$ is true. Then since $[a]_{n}=[b]_{n}$ and $\left[a^{k}\right]_{n}=\left[b^{k}\right]_{n}$ it follows from Problem 3(c) that

$$
\begin{aligned}
{\left[a \cdot a^{k}\right]_{n} } & =\left[b \cdot b^{k}\right]_{n} \\
{\left[a^{k+1}\right]_{n} } & =\left[b^{k+1}\right]_{n} .
\end{aligned}
$$

In other words, $P(k+1)$ is true. It follows by induction that $P(k)$ is true for all $k \geq 1$.
Alternate Proof. For all $k \geq 1$ note that

$$
\left(a^{k}-b^{k}\right)=(a-b)\left(a^{k-1}+a^{k-2} b+\cdots+a b^{k-2}+b^{k-1}\right) .
$$

It follows that $n \mid(a-b)$ implies $n \mid\left(a^{k}-b^{k}\right)$.

There are 4 problems, worth 6 points each, for a total of 24 points. This is a closed book test. Anyone caught cheating will receive a score of zero.

Problem 1. Hand Computations.

(a) Use Pascal's Triangle to compute the expansion of $(1+x)^{5}$.

Here is Pascal's Triangle:

Thus we conclude that

$$
(1+x)^{5}=1+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5} .
$$

(b) Compute the standard form of $\left[\frac{7!}{3!4!}\right]_{7}$.

$$
\left[\frac{7!}{3!4!}\right]_{7}=\left[\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot T}{3 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot \mathrm{I}}\right]_{7}=[35]_{7}=[0]_{7} .
$$

(c) Compute the standard form of $\left[2^{6}\right]_{7}$.

$$
\left[2^{6}\right]_{7}=\left[2^{3}\right]_{7} \cdot\left[2^{3}\right]_{7}=[8]_{7} \cdot[8]_{7}=[1]_{7} \cdot[1]_{7}=[1]_{7} .
$$

Problem 2. Modular Arithmetic. Let $0 \neq n \in \mathbb{Z}$. Define the set $\mathbb{Z} / n:=\left\{[a]_{n}: a \in \mathbb{Z}\right\}$ with equivalence relation $[a]_{n}=[b]_{n} \Leftrightarrow n \mid(a-b)$ and algebraic operations

$$
[a]_{n}+[b]_{n}:=[a+b]_{n} \quad \text { and } \quad[a]_{n} \cdot[b]_{n}:=[a b]_{n}
$$

(You can assume that this is all well-defined.) Recall that \mathbb{Z} / n is a ring with additive identity element $[0]_{n}$ and multiplicative identity element $[1]_{n}$.
(a) If $\operatorname{gcd}(a, n)=1$, prove that the element $[a]_{n} \in \mathbb{Z} / n$ has a multiplicative inverse. [You can assume Bézout's Lemma.]

Proof. Since $\operatorname{gcd}(a, n)=1$, Bézout's Lemma says that there exist $x, y \in \mathbb{Z}$ with $a x+n y=1$. Then we have

$$
1-a x=n y \quad \Longrightarrow \quad n \mid(a x-1) \quad \Longrightarrow \quad[1]_{n}=[a x]_{n}=[a]_{n} \cdot[x]_{n} .
$$

It follows that the inverse exists:

$$
\left[a^{-1}\right]_{n}=[x]_{n} .
$$

(b) If the element $[a]_{n} \in \mathbb{Z} / n$ has a multiplicative inverse, prove that there exist $x, y \in \mathbb{Z}$ with $a x+n y=1$.

Proof. Suppose there exists $x \in \mathbb{Z}$ with $[a]_{n} \cdot[x]_{n}=[1]_{n}$. Then we have

$$
[1]_{n}=[a x]_{n} \quad \Longrightarrow \quad n \mid(1-a x) \quad \Longrightarrow \quad 1-a x=n y \text { for some } y \in \mathbb{Z}
$$

(c) If there exist $x, y \in \mathbb{Z}$ with $a x+n y=1$, prove that $\operatorname{gcd}(a, n)=1$.

Proof. Suppose that $a x+n y=1$ for some $x, y \in \mathbb{Z}$ and let $d \in \mathbb{Z}$ be any common divisor of a and b, say $a=d k$ and $b=d \ell$ for some $k, \ell \in \mathbb{Z}$. Then we have

$$
1=a x+b y=(d k) x+(d \ell) y=d\left(k x+\ell^{\prime} y\right)
$$

which implies that $d= \pm 1$. It follows that the greatest common divisor is 1 .

Problem 3. Principle of Induction.

(a) Accurately state the Principle of Induction.

Let $P(n)$ be a statement depending on an integer $n \in \mathbb{Z}$. Suppose that

$$
\left\{\begin{array}{l}
\bullet P(b) \text { is true for some specific } b \in \mathbb{Z} \text {, and } \\
\bullet \text { for all } n \geq b \text { we have } P(n) \Rightarrow P(n+1) .
\end{array}\right.
$$

Then it follows that $P(n)$ is true for all $n \geq b$.
(b) For all integers $n \geq 2$ define the statement $P(n):=" 1+2+\cdots+n=\frac{n(n+1)}{2}$ ". Prove that $P(2)$ is a true statement.

$$
1+2=\frac{2 \cdot 3}{2}
$$

(c) Now fix an integer $k \geq 2$ and assume for induction that $P(k)$ is true. In this case, prove that $P(k+1)$ is also true.

Proof. Fix an integer $k \geq 2$ and assume for induction that $P(k)$ is true. In other words, assume that

$$
1+2+\cdots+k=\frac{k(k+1)}{2} .
$$

Then it follows that

$$
\begin{aligned}
1+2+\cdots+(k+1) & =(1+2+\cdots+k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \\
& =\left(\frac{k}{2}+1\right)(k+1) \\
& =\frac{(k+2)}{2}(k+1) \\
& =\frac{(k+1)((k+1)+1)}{2} .
\end{aligned}
$$

In other words, $P(k+1)$ is true.

Problem 4. Binomial Theorem.

(a) Accurately state the Binomial Theorem.

For all integers $a, b, n \in \mathbb{Z}$ with $n \geq 0$ we have

$$
(a+b)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{k} b^{n-k} .
$$

(b) Let $k, p \in \mathbb{Z}$ with p prime and $1 \leq k \leq p-1$. In this case you can assume that p divides the integer $\frac{p!}{k!(p-k)!}$. Use this fact together with the Binomial Theorem to prove that for all $a, b \in \mathbb{Z}$ we have $\left[(a+b)^{p}\right]_{p}=\left[a^{p}+b^{p}\right]_{p}$.

Proof. When $1<k<p$ we have assumed that

$$
\left[\frac{p!}{k!(p-k)!}\right]_{p}=[0]_{p}
$$

Then using the Binomial Theorem gives

$$
\begin{aligned}
{\left[(a+b)^{p}\right]_{p} } & =\left[a^{p}+\sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} a^{k} b^{p-k}+b^{p}\right]_{p} \\
& =\left[a^{p}\right]_{p}+\sum_{k=1}^{p-1}\left[\frac{p!}{k!(p-k)!}\right]_{p} \cdot\left[a^{k} b^{p-k}\right]_{p}+\left[b^{p}\right]_{p} \\
& =\left[a^{p}\right]_{p}+\sum_{k=1}^{p-1}[0]_{p} \cdot\left[a^{k} b^{p-k}\right]_{p}+\left[b^{p}\right]_{p} \\
& =\left[a^{p}\right]_{p}+\sum_{k=1}^{p-1}[0]_{p}+\left[b^{p}\right]_{p} \\
& =\left[a^{p}\right]_{p}+[0]_{p}+\left[b^{p}\right]_{p} \\
& =\left[a^{p}\right]_{p}+\left[b^{p}\right]_{p} .
\end{aligned}
$$

