
Math 230 Fall 2018
Exam 3 — Tues Dec 4 Drew Armstrong

No communication devices or notes are allowed. Any student caught cheating will receive a

score of zero. Each of the 4 problems is worth 6 points, for a total of 24 points.

Problem 1.

(a) Use the Extended Euclidean Algorithmn to compute the inverse of 10 mod 17.

Consider the set of triples (k, `,m) 2 Z3
such that 10k + 17` = m. Beginning with

(0, 1, 17) and (1, 0, 10) we have the following table:

k ` m
0 1 17

1 0 10

�1 1 7

2 �1 3

�5 3 1

It follows that 10 · (�5) = 1 mod 17 and hence 10
�1

= �5 = 12 mod 17.

(b) Use your answer from (a) to solve the equation 10x = 8 mod 17.

Dividing by 10 is the same as multiplying by 12. Thus we have

10x = 8

x = 8 · 12
x = 96

x = 11 mod 17.

(c) Compute 16
16

mod 17. You may assume that Fermat’s Little Theorem is true.

Fermat’s Little Theorem says that ap�1
= 1 mod p for all a, p 2 Z with p prime and

p - a. Taking a = 16 and p = 17 gives

16
16

= 1 mod 17.

Problem 2. Let ⇠ be an equivalence relation on a set S.

(a) Accurately state the three axioms that ⇠ must satisfy.

(E1) 8x 2 S, x ⇠ x,
(E2) 8x, y 2 S, x ⇠ y ) y ⇠ x,
(E3) 8x, y, z 2 S, (x ⇠ y ^ y ⇠ z) ) x ⇠ z.

(b) For all x 2 S let [x] := {z 2 S : x ⇠ z}. Prove that [x] = [y] implies x ⇠ y.

Assume that [x] = [y]. Then from (E1) we have y 2 [y] = [x], which implies that x ⇠ y.



(c) Continuing from (b), prove that x ⇠ y implies [x] = [y].

Assume that x ⇠ y, so (E2) implies y ⇠ x. To prove that [x] ✓ [y], suppose that

z 2 [x], which means that x ⇠ z. Then from (E3) we have (y ⇠ x ^ x ⇠ z) ) y ⇠ z
and hence z 2 [y]. To prove that [y] ✓ [x], suppose that z 2 [y], which means that

y ⇠ z. Then from (E3) we have (x ⇠ y ^ y ⇠ z) ) x ⇠ z and hence z 2 [x].

Problem 3. Fix an integer n 2 Z and for all integers a, b 2 Z consider the relation

a ⇠n b () n|(a� b).

(a) Prove that ⇠n is an equivalence relation on Z.

(E1) For all a 2 Z we have n · 0 = (a� a), hence n|(a� a), hence a ⇠n a.
(E2) Consider a, b 2 Z with a ⇠n b, so that a � b = nk for some k 2 Z. Then

(b� a) = n(�k) implies that n|(b� a) and hence b ⇠n a.
(E3) Consider a, b, c 2 Z with a ⇠n b and b ⇠n c. This means that a � b = nk and

b� c = n` for some ` 2 Z. But then we have

a� c = (a� b) + (b� c) = nk + n` = n(k + `),

which implies that n|(a� c), hence a ⇠n c.

(b) For all a 2 Z define the set [a]n = {c 2 Z : a ⇠n c}. Prove that [a]n = [a0]n and

[b]n = [b0]n imply [a+ b]n = [a0 + b0]n.

Assume that [a]n = [a0]n and [b]n = [b0]n. From Problem 2(b) and the definition of ⇠n

this means that a� a0 = nk and b� b0 = n` for some k, ` 2 Z. But then we have

(a+ b)� (a0 + b0) = (a� a0) + (b� b0) = nk + n` = n(k + `),

which implies that (a+ b) ⇠n (a0+ b0). Then Problem 2(c) implies [a+ b]n = [a0+ b0]n.

(c) Continuing from (b), prove that [a]n = [a0]n and [b]n = [b0]n imply [ab]n = [a0b0]n.

Assume that [a]n = [a0]n and [b]n = [b0]n. From Problem 2(b) and the definition of ⇠n

this means that a� a0 = nk and b� b0 = n` for some k, ` 2 Z. But then we have

ab� a0b0 = ab� (a� nk)(b� n`)

=⇢⇢ab� (⇢⇢ab� an`� bnk + n2k`)

= n(a`+ bk � nk`),

which implies that ab ⇠n a0b0. Then Problem 2(c) implies [ab]n = [a0b0]n.

Problem 4. Fix integers a, b, n 2 Z and for all k 2 Z consider the following statement:

P (k) = “ [ak]n = [bk]n. ”



(a) Accurately state the Principle of Induction.

Let P (n) be a statement depending on an integer n 2 Z. Suppose that
⇢

• P (b) is true for some specific b 2 Z, and
• for all n � b we have P (n) ) P (n+ 1).

Then it follows that P (n) is true for all n � b.

(b) Assuming that P (1) is true, use induction to prove that P (k) is true for all k � 1.

[Hint: You can use the result of Problem 3(c).]

Let [a]n = [b]n, i.e., P (1) is true. Now assume for induction that [ak]n = [bk]n, i.e.,
P (k) is true. Then since [a]n = [b]n and [ak]n = [bk]n it follows from Problem 3(c) that

[a · ak]n = [b · bk]n
[ak+1

]n = [bk+1
]n.

In other words, P (k+1) is true. It follows by induction that P (k) is true for all k � 1.

Alternate Proof. For all k � 1 note that

(ak � bk) = (a� b)(ak�1
+ ak�2b+ · · ·+ abk�2

+ bk�1
).

It follows that n|(a� b) implies n|(ak � bk).



Math 230 D Fall 2015
Exam 3 — Mon Dec 7 Drew Armstrong

There are 4 problems, worth 6 points each, for a total of 24 points. This is a closed book

test. Anyone caught cheating will receive a score of zero.

Problem 1. Hand Computations.

(a) Use Pascal’s Triangle to compute the expansion of (1 + x)5.

Here is Pascal’s Triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Thus we conclude that

(1 + x)5 = 1 + 5x+ 10x2 + 10x3 + 5x4 + x5.

(b) Compute the standard form of
⇥

7!
3!4!

⇤
7
.


7!

3!4!

�

7

=


7 · 6 · 5 ·(((((

4 · 3 · 2 · 1
3 · 2 · 1 ·(((((

4 · 3 · 2 · 1

�

7

= [35]7 = [0]7.

(c) Compute the standard form of
⇥
2
6
⇤
7
.

[2
6
]7 = [2

3
]7 · [23]7 = [8]7 · [8]7 = [1]7 · [1]7 = [1]7.

Problem 2. Modular Arithmetic. Let 0 6= n 2 Z. Define the set Z/n := {[a]n : a 2 Z}
with equivalence relation [a]n = [b]n , n|(a� b) and algebraic operations

[a]n + [b]n := [a+ b]n and [a]n · [b]n := [ab]n.

(You can assume that this is all well-defined.) Recall that Z/n is a ring with additive

identity element [0]n and multiplicative identity element [1]n.

(a) If gcd(a, n) = 1, prove that the element [a]n 2 Z/n has a multiplicative inverse.

[You can assume Bézout’s Lemma.]

Proof. Since gcd(a, n) = 1, Bézout’s Lemma says that there exist x, y 2 Z with

ax+ ny = 1. Then we have

1� ax = ny =) n|(ax� 1) =) [1]n = [ax]n = [a]n · [x]n.
It follows that the inverse exists:

[a�1
]n = [x]n.

⇤



(b) If the element [a]n 2 Z/n has a multiplicative inverse, prove that there exist x, y 2 Z
with ax+ ny = 1.

Proof. Suppose there exists x 2 Z with [a]n · [x]n = [1]n. Then we have

[1]n = [ax]n =) n|(1� ax) =) 1� ax = ny for some y 2 Z.
⇤

(c) If there exist x, y 2 Z with ax+ ny = 1, prove that gcd(a, n) = 1.

Proof. Suppose that ax+ ny = 1 for some x, y 2 Z and let d 2 Z be any common

divisor of a and b, say a = dk and b = d` for some k, ` 2 Z. Then we have

1 = ax+ by = (dk)x+ (d`)y = d(kx+ `0y),

which implies that d = ±1. It follows that the greatest common divisor is 1. ⇤

Problem 3. Principle of Induction.

(a) Accurately state the Principle of Induction.

Let P (n) be a statement depending on an integer n 2 Z. Suppose that
⇢

• P (b) is true for some specific b 2 Z, and
• for all n � b we have P (n) ) P (n+ 1).

Then it follows that P (n) is true for all n � b.

(b) For all integers n � 2 define the statement P (n) := “1 + 2 + · · · + n =
n(n+1)

2 ”.

Prove that P (2) is a true statement.

1 + 2 =
2 · 3
2

(c) Now fix an integer k � 2 and assume for induction that P (k) is true. In this case,

prove that P (k + 1) is also true.

Proof. Fix an integer k � 2 and assume for induction that P (k) is true. In other

words, assume that

1 + 2 + · · ·+ k =
k(k + 1)

2
.

Then it follows that

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=

✓
k

2
+ 1

◆
(k + 1)

=
(k + 2)

2
(k + 1)

=
(k + 1)((k + 1) + 1)

2
.

In other words, P (k + 1) is true. ⇤



Problem 4. Binomial Theorem.

(a) Accurately state the Binomial Theorem.

For all integers a, b, n 2 Z with n � 0 we have

(a+ b)n =

nX

k=0

n!

k!(n� k)!
akbn�k.

(b) Let k, p 2 Z with p prime and 1  k  p � 1. In this case you can assume that p
divides the integer

p!
k!(p�k)! . Use this fact together with the Binomial Theorem to

prove that for all a, b 2 Z we have [(a+ b)p]p = [ap + bp]p.

Proof. When 1 < k < p we have assumed that


p!

k!(p� k)!

�

p

= [0]p.

Then using the Binomial Theorem gives

[(a+ b)p]p =

"
ap +

p�1X

k=1

p!

k!(p� k)!
akbp�k

+ bp
#

p

= [ap]p +
p�1X

k=1


p!

k!(p� k)!

�

p

· [akbp�k
]p + [bp]p

= [ap]p +
p�1X

k=1

[0]p · [a
kbp�k

]p + [bp]p

= [ap]p +
p�1X

k=1

[0]p + [bp]p

= [ap]p + [0]p + [bp]p

= [ap]p + [bp]p.

⇤


