Problem 1. Well-Ordering.

(a) Accurately state the Well-Ordering Principle.

Let $S \subseteq \mathbb{Z}$ be a set of integers. If

- S is non-empty $(\exists s \in S)$,
- S is bounded below $(\exists b \in \mathbb{Z}, \forall s \in S, b \leq s)$
then S has a least element $(\exists m \in S, \forall s \in S, m \leq s)$.
(b) Explicitly use part (a) to prove that there exists a smallest positive integer $m>0$.

Consider the set of positive integers $S=\{n \in \mathbb{Z}: n>0\}$. Since S is non-empty (it contains 1) and is bounded below (by 0), there exists a least element $m \in S$.
(c) Since $1>0$ we know that $m \leq 1$. Prove that in fact $m=1$. [Hint: Assume for contradiction that $m<1$. Use the fact that $a<b$ and $0<c$ imply $a c<b c$.]

Assume for contradiction that $m<1$ and recall that $m>0$. Then multiplying the inequality $m<1$ by m gives $m^{2}<m$ and multiplying $0<m$ by m gives $0<m^{2}$, hence

$$
0<m^{2}<m
$$

But this contradicts the fact that m is the smallest positive integer.

Problem 2. Euclid's Lemma. Consider $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$ and $a b \neq 0$.
(a) Prove that $a \mid b c$ implies $a \mid c$. [Hint: There exist some $x, y \in \mathbb{Z}$ such that $a x+b y=1$.]

Assume that $a \mid b c$ so that $a k=b c$ for some $k \in \mathbb{Z}$. Since $\operatorname{gcd}(a, b)=1$ there exist some $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Then multiplying both sides by c gives

$$
\begin{aligned}
a x+b y & =1 \\
c(a x+b y) & =c \\
a c x+(b c) y) & =c \\
a c x+(a k) y & =c \\
a(c x+k y) & =c
\end{aligned}
$$

and hence $a \mid c$.
(b) Use (a) to prove that $a x+b y=0$ implies $(x, y)=(-b k, a k)$ for some $k \in \mathbb{Z}$. [Hint: These are not the same x, y from part (a).]

Assume that $a x+b y=0$ for some $x, y \in \mathbb{Z}$. Then since $a(-x)=b y$ we have $a \mid b y$ and hence $a \mid y$ from part (a). Similarly, since $b(-y)=a x$ we have $b \mid a x$ and hence $b \mid x$ from
part (a). We have shown that $a k=y$ and $b \ell=x$ for some $k, \ell \in \mathbb{Z}$. Finally, we have

$$
\begin{aligned}
a x & =-b y \\
a(b \ell) & =-b(a k) \\
(a b) \ell & =(a b)(-k) \\
\ell & =-k .
\end{aligned}
$$

Problem 3. Linear Diophantine Equations.

(a) Use the Euclidean Algorithm to find one integer solution of $26 x+16 y=2$.

We consider the set of triples $(x, y, z) \in \mathbb{Z}^{3}$ such that $26 x+16 y=z$. Then we apply the Euclidean Algorithm to the obvious triples $(1,0,26)$ and $(0,1,16)$ to obtain the following table:

x	y	z
1	0	26
0	1	16
1	-1	10
-1	2	6
2	-3	4
-3	5	2

It follows that $(x, y)=(-3,5)$ is one solution of $26 x+16 y=2$.
(b) Find the complete integer solution of the homogeneous equation $26 x+16 y=0$.

From part (a) we know that $\operatorname{gcd}(26,16)=2$. Hence the reduced form of the equation is $13 x+8 y=0$ with $\operatorname{gcd}(13,8)=1$. Then from 2(b) the complete solution is $(x, y)=$ $(-8 k, 13 k)$ for all $k \in \mathbb{Z}$.
(c) Combine (a) and (b) to tell me the complete integer solution of $26 x+16 y=2$.

We add the solutions from (a) and (b) to obtain

$$
(x, y)=(-3-8 k, 5+13 k) \quad \text { for all } k \in \mathbb{Z}
$$

There are other ways to express the same solution. Yours may look different.

Problem 4. Division With Remainder.

(a) Accurately state the Division Theorem for integers.

For any $a, b \in \mathbb{Z}$ with $b>0$ there exist unique integers $q, r \in \mathbb{Z}$ such that

$$
\left\{\begin{array}{l}
a=q b+r, \\
0 \leq r<b .
\end{array}\right.
$$

(b) Suppose that $a=r+s b+t b^{2}$ for some integers $r, s, t, b \in \mathbb{Z}$ with $r, s, t \in\{0,1, \ldots, b-1\}$. Tell me the quotient and the remainder of $a \bmod b$.

Observe that

$$
\left\{\begin{array}{l}
a=(s+t b) b+r, \\
0 \leq r<b .
\end{array}\right.
$$

Hence the remainder is r and the quotient is $q=s+t b$.
(c) Now suppose that $r+s b+t b^{2}=r^{\prime}+s^{\prime} b+t^{\prime} b^{2}$ with $r, s, t, r^{\prime}, s^{\prime}, t^{\prime} \in\{0,1, \ldots, b-1\}$. Use parts (a) and (b) to prove that $r=r^{\prime}, s=s^{\prime}$ and $t=t^{\prime}$.

Proof. Observe that

$$
\left\{\begin{array} { l }
{ a = (s + t b) b + r , } \\
{ 0 \leq r < b , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
a=\left(s^{\prime}+t^{\prime} b\right) b+r^{\prime}, \\
0 \leq r^{\prime}<b .
\end{array}\right.\right.
$$

Hence $r=r^{\prime}$ is the unique remainder and $q=s+t b=s^{\prime}+t^{\prime} b$ is the unique quotient. Finally, observe that

$$
\left\{\begin{array} { l }
{ q = t b + s , } \\
{ 0 \leq s < b , }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
q=t^{\prime} b+s^{\prime}, \\
0 \leq s^{\prime}<b
\end{array}\right.\right.
$$

Hence the unique remainder of $q \bmod b$ is $s=s^{\prime}$ and the unique quotient is $t=t^{\prime}$.

