
Math 230 Spring 2019
Exam 2 — Thurs Apr 4 Drew Armstrong

Problem 1. Well-Ordering.

(a) Accurately state the Well-Ordering Principle.

Let S ⊆ Z be a set of integers. If
• S is non-empty (∃s ∈ S),
• S is bounded below (∃b ∈ Z,∀s ∈ S, b ≤ s)

then S has a least element (∃m ∈ S, ∀s ∈ S,m ≤ s).

(b) Explicitly use part (a) to prove that there exists a smallest positive integer m > 0.

Consider the set of positive integers S = {n ∈ Z : n > 0}. Since S is non-empty (it
contains 1) and is bounded below (by 0), there exists a least element m ∈ S.

(c) Since 1 > 0 we know that m ≤ 1. Prove that in fact m = 1. [Hint: Assume for
contradiction that m < 1. Use the fact that a < b and 0 < c imply ac < bc.]

Assume for contradiction that m < 1 and recall that m > 0. Then multiplying the
inequality m < 1 by m gives m2 < m and multiplying 0 < m by m gives 0 < m2, hence

0 < m2 < m.

But this contradicts the fact that m is the smallest positive integer.

Problem 2. Euclid’s Lemma. Consider a, b ∈ Z with gcd(a, b) = 1 and ab 6= 0.

(a) Prove that a|bc implies a|c. [Hint: There exist some x, y ∈ Z such that ax + by = 1.]

Assume that a|bc so that ak = bc for some k ∈ Z. Since gcd(a, b) = 1 there exist some
x, y ∈ Z such that ax + by = 1. Then multiplying both sides by c gives

ax + by = 1

c(ax + by) = c

acx + (bc)y) = c

acx + (ak)y = c

a(cx + ky) = c,

and hence a|c.

(b) Use (a) to prove that ax + by = 0 implies (x, y) = (−bk, ak) for some k ∈ Z. [Hint:
These are not the same x, y from part (a).]

Assume that ax + by = 0 for some x, y ∈ Z. Then since a(−x) = by we have a|by and
hence a|y from part (a). Similarly, since b(−y) = ax we have b|ax and hence b|x from



part (a). We have shown that ak = y and b` = x for some k, ` ∈ Z. Finally, we have

ax = −by
a(b`) = −b(ak)

(ab)` = (ab)(−k)

` = −k.

Problem 3. Linear Diophantine Equations.

(a) Use the Euclidean Algorithm to find one integer solution of 26x + 16y = 2.

We consider the set of triples (x, y, z) ∈ Z3 such that 26x + 16y = z. Then we apply
the Euclidean Algorithm to the obvious triples (1, 0, 26) and (0, 1, 16) to obtain the
following table:

x y z
1 0 26
0 1 16
1 −1 10
−1 2 6

2 −3 4
−3 5 2

It follows that (x, y) = (−3, 5) is one solution of 26x + 16y = 2.

(b) Find the complete integer solution of the homogeneous equation 26x + 16y = 0.

From part (a) we know that gcd(26, 16) = 2. Hence the reduced form of the equation
is 13x + 8y = 0 with gcd(13, 8) = 1. Then from 2(b) the complete solution is (x, y) =
(−8k, 13k) for all k ∈ Z.

(c) Combine (a) and (b) to tell me the complete integer solution of 26x + 16y = 2.

We add the solutions from (a) and (b) to obtain

(x, y) = (−3− 8k, 5 + 13k) for all k ∈ Z.

There are other ways to express the same solution. Yours may look different.

Problem 4. Division With Remainder.

(a) Accurately state the Division Theorem for integers.

For any a, b ∈ Z with b > 0 there exist unique integers q, r ∈ Z such that{
a = qb + r,
0 ≤ r < b.



(b) Suppose that a = r+sb+tb2 for some integers r, s, t, b ∈ Z with r, s, t ∈ {0, 1, . . . , b−1}.
Tell me the quotient and the remainder of a mod b.

Observe that {
a = (s + tb)b + r,
0 ≤ r < b.

Hence the remainder is r and the quotient is q = s + tb.

(c) Now suppose that r + sb + tb2 = r′ + s′b + t′b2 with r, s, t, r′, s′, t′ ∈ {0, 1, . . . , b − 1}.
Use parts (a) and (b) to prove that r = r′, s = s′ and t = t′.

Proof. Observe that{
a = (s + tb)b + r,
0 ≤ r < b,

and

{
a = (s′ + t′b)b + r′,
0 ≤ r′ < b.

Hence r = r′ is the unique remainder and q = s + tb = s′ + t′b is the unique quotient.
Finally, observe that{

q = tb + s,
0 ≤ s < b,

and

{
q = t′b + s′,
0 ≤ s′ < b.

Hence the unique remainder of q mod b is s = s′ and the unique quotient is t = t′. �


