Problem 1. Logic.

(a) Complete the following truth table.

P	Q	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$
T	T	T	T	T
T	F	F	T	F
F	T	F	T	T
F	F	F	F	T

(b) Use a truth table to prove that $\neg(P \Rightarrow Q)=P \wedge \neg Q$.

P	Q	$\neg Q$	$P \wedge \neg Q$	$P \Rightarrow Q$	$\neg(P \Rightarrow Q)$
T	T	F	F	T	F
T	F	T	T	F	T
F	T	F	F	T	F
F	F	T	F	T	F

(c) Use (b) to find the opposite of the following statement:
"For all $x \in S$ we have $P(x) \Rightarrow Q(x)$."
From de Morgan's law, the opposite statement is
"There exists some $x \in S$ such that $\neg(P(x) \Rightarrow Q(x))$."
From part (b) this is the same as
"There exists some $x \in S$ such that $P(x)$ and $\neg Q(x) . "$

Problem 2. Applying Logic.

(a) Use the contrapositive to prove for all $n \in \mathbb{Z}$ that "if n^{2} is even then n is even."

Proof. For any $n \in \mathbb{Z}$ we will prove that "if n is odd then n^{2} is odd." So assume that n is odd, which means that $n=2 k+1$ for some $k \in \mathbb{Z}$. Then we have

$$
n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2\right)+1,
$$

which is odd.
(b) Use the method of contradiction to prove that $\sqrt{18} \notin \mathbb{Q}$. You may assume that $\sqrt{2} \notin \mathbb{Q}$.

Proof. Assume for contradiction that $\sqrt{18}=a / b$ for some integers $a, b \in \mathbb{Z}$. But then since $\sqrt{18}=3 \sqrt{2}$ we have

$$
\sqrt{2}=\frac{1}{3} \sqrt{18}=\frac{1}{3} \cdot \frac{a}{b}=\frac{a}{3 b} \in \mathbb{Q},
$$

which contradicts the fact that $\sqrt{2} \notin \mathbb{Q}$.
(c) Use the principle from 1(c) to prove that the following statement is false:

$$
\text { "For all integers } a, b, c \in \mathbb{Z} \text { we have }(a b=a c) \Rightarrow(b=c) \text {." }
$$

Proof. According to 1(c), the opposite of this statement is
"There exist some integers $a, b, c \in \mathbb{Z}$ such that $a b=a c$ and $b \neq c . "$
To prove this it suffices to give a specific example. Take $a=0, b=1$ and $c=2$. Then we have $a b=a c$ and $b \neq c$.

Problem 3. Divisibility.

(a) For integers $a, b \in \mathbb{Z}$, state the formal definition of " $a \mid b$."

$$
" a \mid b "=" \exists k \in \mathbb{Z}, a k=b . "
$$

(b) For all integers $n \in \mathbb{Z}$, prove that $n \mid 0$ and $1 \mid n$.

Proof. To see that $n \mid 0$ note that $n \cdot 0=0$. To see that $1 \mid n$ note that $1 \cdot n=n$.
(c) For all integers $a, b, c \in \mathbb{Z}$, prove that "if $a \mid b$ and $a \mid c$ then $a \mid(b+c)$."

Proof. Assume that $a \mid b$ and $a \mid c$. By definition this means that we have $a k=b$ and $a \ell=c$ for some integers $k, \ell \in \mathbb{Z}$. But then we have

$$
b+c=a k+a \ell=a(k+\ell)
$$

which implies that $a \mid(b+c)$.
Problem 4. Induction. For any integer $n \in \mathbb{Z}$ we define the following statement:

$$
P(n):=\text { "There exists an integer } k \in \mathbb{Z} \text { such that } 4^{n}=3 k+1 . "
$$

(a) Prove that the statements $P(0), P(1)$ and $P(2)$ are true.

Proof. To see that $P(0), P(1), P(2)$ are true, take $k=0,1,5$, respectively.
(b) Now fix some integer $n \geq 0$ and assume for induction that $P(n)$ is true. In this case, prove that $P(n+1)$ is also true.

Proof. Since $P(n)$ is true we can write $4^{n}=3 k+1$ for some $k \in \mathbb{Z}$. But then we have

$$
\begin{aligned}
4^{n+1} & =4 \cdot 4^{n} \\
& =4 \cdot(3 k+1) \\
& =4 \cdot 3 k+4 \\
& =4 \cdot 3 k+3+1 \\
& =3(4 k+1)+1,
\end{aligned}
$$

which implies that $P(n+1)$ is also true.
(c) What do you conclude from this?

From the Principle of Induction I conclude that $P(n)$ is true for all integers $n \geq 0$.

