Problem 1. Logic.

(a) Complete the following truth table.

P	Q	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$
T	T	Т	T	T
T	F	F	T	F
F	T	F	T	T
F	F	F	F	T

(b) Use a truth table to prove that $\neg(P \Rightarrow Q) = P \land \neg Q$.

P	Q	$\neg Q$	$P \wedge \neg Q$	$P \Rightarrow Q$	$\neg(P \Rightarrow Q)$
T	T	F	F	T	F
T	F	T	T	F	T
F	T	F	F	T	F
F	F	T	F	T	F

(c) Use (b) to find the **opposite** of the following statement:

"For all $x \in S$ we have $P(x) \Rightarrow Q(x)$."

From de Morgan's law, the opposite statement is

"There exists some $x \in S$ such that $\neg(P(x) \Rightarrow Q(x))$."

From part (b) this is the same as

"There exists some $x \in S$ such that P(x) and $\neg Q(x)$."

Problem 2. Applying Logic.

(a) Use the contrapositive to prove for all $n \in \mathbb{Z}$ that "if n^2 is even then n is even."

Proof. For any $n \in \mathbb{Z}$ we will prove that "if n is odd then n^2 is odd." So assume that n is odd, which means that n = 2k + 1 for some $k \in \mathbb{Z}$. Then we have

$$n^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 2(2k^{2} + 2) + 1,$$

which is odd.

(b) Use the method of contradiction to prove that $\sqrt{18} \notin \mathbb{Q}$. You may assume that $\sqrt{2} \notin \mathbb{Q}$.

Proof. Assume for contradiction that $\sqrt{18} = a/b$ for some integers $a, b \in \mathbb{Z}$. But then since $\sqrt{18} = 3\sqrt{2}$ we have

$$\sqrt{2} = \frac{1}{3}\sqrt{18} = \frac{1}{3} \cdot \frac{a}{b} = \frac{a}{3b} \in \mathbb{Q},$$

which contradicts the fact that $\sqrt{2} \notin \mathbb{Q}$.

(c) Use the principle from 1(c) to prove that the following statement is **false**:

"For all integers $a, b, c \in \mathbb{Z}$ we have $(ab = ac) \Rightarrow (b = c)$."

Proof. According to 1(c), the opposite of this statement is

"There exist some integers $a, b, c \in \mathbb{Z}$ such that ab = ac and $b \neq c$."

To prove this it suffices to give a specific example. Take a = 0, b = 1 and c = 2. Then we have ab = ac and $b \neq c$.

Problem 3. Divisibility.

(a) For integers $a, b \in \mathbb{Z}$, state the formal definition of "a|b."

$$a|b" = \exists k \in \mathbb{Z}, ak = b.$$

(b) For all integers $n \in \mathbb{Z}$, prove that n|0 and 1|n.

Proof. To see that n|0 note that $n \cdot 0 = 0$. To see that 1|n note that $1 \cdot n = n$.

(c) For all integers $a, b, c \in \mathbb{Z}$, prove that "if a|b and a|c then a|(b+c)."

Proof. Assume that a|b and a|c. By definition this means that we have ak = b and $a\ell = c$ for some integers $k, \ell \in \mathbb{Z}$. But then we have

$$b + c = ak + a\ell = a(k + \ell),$$

which implies that a|(b+c).

Problem 4. Induction. For any integer $n \in \mathbb{Z}$ we define the following statement:

P(n) := "There exists an integer $k \in \mathbb{Z}$ such that $4^n = 3k + 1$."

(a) Prove that the statements P(0), P(1) and P(2) are true.

Proof. To see that P(0), P(1), P(2) are true, take k = 0, 1, 5, respectively.

(b) Now fix some integer $n \ge 0$ and assume for induction that P(n) is true. In this case, prove that P(n+1) is also true.

Proof. Since P(n) is true we can write $4^n = 3k + 1$ for some $k \in \mathbb{Z}$. But then we have $4^{n+1} = 4 \cdot 4^n$

$$= 4 \cdot 4$$

= 4 \cdot (3k + 1)
= 4 \cdot 3k + 4
= 4 \cdot 3k + 3 + 1
= 3(4k + 1) + 1.

which implies that P(n+1) is also true.

(c) What do you conclude from this?

From the Principle of Induction I conclude that P(n) is true for **all** integers $n \ge 0$.