Problem 1. This problem is about the ring $\mathbb{Z} / 17 \mathbb{Z}$. Since $\operatorname{gcd}(8,17)=1$ we know that the element $[8]_{17} \in \mathbb{Z} / 17 \mathbb{Z}$ has a multiplicative inverse.
(a) Use the Extended Euclidean Algorithm to find the inverse $\left[8^{-1}\right]_{17} \in \mathbb{Z} / 17 \mathbb{Z}$.
(b) Use your answer from part (a) to solve the following equations for $x, y, z \in \mathbb{Z}$:

$$
\begin{aligned}
{[8 x]_{17} } & =[2]_{17}, \\
{[8 y]_{17} } & =[3]_{17}, \\
{[8 z]_{17} } & =[4]_{17} .
\end{aligned}
$$

(a) Consider the set of triples $k, \ell, m \in \mathbb{Z}$ such that $8 k+17 \ell=m$. Starting with the easy triples $(0,1,17)$ and $(1,0,8)$, we have the following table:

k	ℓ	m
0	1	17
1	0	8
-2	1	1

It follows that $8(-2)+17(1)=1$, and hence

$$
\begin{aligned}
{[8]_{17} \cdot[-2]_{17}+[17]_{17} \cdot[1]_{17} } & =[1]_{17} \\
{\left.[8]_{17} \cdot[-2]_{17}+[0]_{17}-11\right]_{17} } & =[1]_{17} \\
{[8]_{17} \cdot[-2]_{17} } & =[1]_{17} .
\end{aligned}
$$

In other words:

$$
\left[8^{-1}\right]_{17}=[-2]_{17}=[15]_{17} .
$$

(b) From part (a) we know that "dividing by 8 " is the same as "multiplying by 15 " $\bmod 17$. Thus we have

$$
\begin{aligned}
{[8 x]_{17} } & =[2]_{17} \\
{[15]_{17} \cdot[8 x]_{17} } & =[15]_{17} \cdot[2]_{17} \\
{[x]_{17} } & =[2 \cdot 15]_{17}=[30]_{17}=[13]_{17},
\end{aligned}
$$

and

$$
\begin{aligned}
{[8 y]_{17} } & =[3]_{17} \\
{[15]_{17} \cdot[8 y]_{17} } & =[15]_{17} \cdot[3]_{17} \\
{[y]_{17} } & =[3 \cdot 15]_{17}=[45]_{17}=[11]_{17},
\end{aligned}
$$

and

$$
\begin{aligned}
{[8 z]_{17} } & =[4]_{17} \\
{[15]_{17} \cdot[8 z]_{17} } & =[15]_{17} \cdot[4]_{17} \\
{[z]_{17} } & =[4 \cdot 15]_{17}=[60]_{17}=[9]_{17} .
\end{aligned}
$$

Problem 2. In this problem you will give an induction proof of Fermat's Little Theorem. You may assume the following statement, which we proved in class: For all $a, b, p \in \mathbb{Z}$ with p prime we have

$$
\left[(a+b)^{p}\right]_{p}=\left[a^{p}\right]_{p}+\left[b^{p}\right]_{p} .
$$

Now fix a prime p and for each integer $n \in \mathbb{Z}$ consider the following statement:

$$
P(n)="\left[n^{p}\right]_{p}=[n]_{p} . "
$$

(a) Explain why the statements $P(0)$ and $P(1)$ are true.
(b) If $P(n)$ is true, prove that $P(-n)$ is true. [Hint: $p=2$ is a special case.]
(c) If $P(n)$ is true, prove that $P(n+1)$ is true.
(a) Since $0^{p}=0$ and $1^{p}=1$ we note that the following statements are true:

$$
\begin{aligned}
{\left[0^{p}\right]_{p} } & =[0]_{p}, \\
{\left[1^{p}\right]_{p} } & =[1]_{p} .
\end{aligned}
$$

(b) Assuing that $\left[n^{p}\right]_{p}=[n]_{p}$, we will prove that $\left[(-n)^{p}\right]_{p}=[-n]_{p}$.

Proof. There are two cases. Case 1: If p is odd then we have

$$
\left[(-n)^{p}\right]_{p}=\left[(-1)^{p} n^{p}\right]_{p}=\left[-n^{p}\right]_{p}=[-1]_{p} \cdot\left[n^{p}\right]_{p}=[-1]_{p} \cdot[n]_{p}=[-n]_{p} .
$$

Case 2: If p is even then since p is prime we must have $p=2$. Thus we want to show that $\left[(-n)^{2}\right]_{2}=[-n]_{2}$. But note that $[-1]_{2}=[1]_{2}$. Therefore we have

$$
\left[(-n)^{2}\right]_{2}=\left[(-1)^{2} n^{2}\right]_{2}=\left[n^{2}\right]_{2}=[n]_{2}=[-1]_{2} \cdot[n]_{2}=[-n]_{2} .
$$

(c) Assuming that $\left[n^{p}\right]_{p}=[n]_{p}$, we will prove that $\left[(n+1)^{p}\right]_{p}=[n+1]_{p}$.

Proof. We assume that $\left[(a+b)^{p}\right]_{p}=\left[a^{p}\right]_{p}+\left[b^{p}\right]_{p}$ for all $a, b \in \mathbb{Z}$. (This is called the "Freshman's Dream." The proof uses the Binomial Theorem and we did it in class.) Thus we have

$$
\left[(n+1)^{p}\right]_{p}=\left[n^{p}\right]_{p}+\left[1^{p}\right]_{p}=[n]_{p}+[1]_{p}=[n+1]_{p}
$$

as desired.

Problem 3. In this problem you will prove a formula related to the RSA Cryptosystem.
(a) Consider $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. If $a \mid c$ and $b \mid c$, prove that $a b \mid c$. [Hint: There exist integers $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Multiply both sides by c.]
(b) Consider $a, p \in \mathbb{Z}$ with p prime and with $\operatorname{gcd}(a, p)=1$ (i.e., with $p \nmid a)$. Prove that $\left[a^{p-1}\right]_{p}=[1]_{p}$. [Hint: Use Problem 2 and the fact that $\left[a^{-1}\right]_{p}$ exists.]
(c) Consider $m, p, q \in \mathbb{Z}$ with $p \neq q$ prime and with $\operatorname{gcd}(m, p q)=1$ (i.e., with $p \nmid m$ and $q \nmid m)$. Prove that

$$
\left[m^{(p-1)(q-1)}\right]_{p q}=[1]_{p q} .
$$

[Hint: Use part (b) to show that $p \mid\left(m^{(p-1)(q-1)}-1\right)$ and $q \mid\left(m^{(p-1)(q-1)}-1\right)$. You will need to mention the extended version of Euclid's Lemma. Then use part (a).]
(a) Proof. Consider $a, b, c \in \mathbb{Z}$ with $a \mid c$ and $b \mid c$, so that $c=a k$ and $c=b \ell$ for some $k, \ell \in \mathbb{Z}$. If $\operatorname{gcd}(a, b)=1$ then we know that there exist some (non-unique) $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Multiplying both sides by c gives

$$
\begin{aligned}
c & =c a x+c b y \\
& =(b \ell) a x+(a k) b y \\
& =a b(\ell x+k y),
\end{aligned}
$$

and hence $a b \mid c$.
(b) Proof. Consider $a, p \in \mathbb{Z}$ with p prime and $p \nmid a$. From Problem 2 we know that

$$
\left[a^{p}\right]_{p}=[a]_{p} .
$$

But since $\operatorname{gcd}(a, p)=1$ we also know that the inverse $\left[a^{-1}\right]_{p}$ exists. Multiplying both sides by the inverse gives

$$
\begin{aligned}
{\left[a^{p}\right]_{p} } & =[a]_{p} \\
{\left[a^{-1}\right]_{p} \cdot\left[a^{p}\right]_{p} } & =\left[a^{-1}\right]_{p} \cdot[a]_{p} \\
{\left[a^{p-1}\right]_{p} } & =[1]_{p} .
\end{aligned}
$$

Alternate Proof. Consider $a, p \in \mathbb{Z}$ with p prime and $p \nmid a$. From Problem 2 we know that $\left[a^{p}\right]_{p}=[a]_{p}$. By definition this means that

$$
p \mid\left(a^{p}-a\right) \quad \text { or, in other words, } \quad p \mid a\left(a^{p-1}-1\right) .
$$

Then since p is prime and $p \nmid a$ we have from Euclid's Lemma that

$$
p \mid\left(a^{p-1}-a\right) \quad \text { or, in other words, } \quad\left[a^{p-1}\right]_{p}=[1]_{p} .
$$

(c) Proof. Consider $m, p, q \in \mathbb{Z}$ with $p \neq q$ prime and with $\operatorname{gcd}(m, p q)=1$ (i.e., with $p \nmid m$ and $q \nmid m$.) Since $p \nmid m$ we also have $p \nmid m^{(q-1)}$. Indeed, we have $p \nmid m^{k}$ for any power k. This follows from the contrapositive of Euclid's Lemma:

$$
p \mid(m \cdot m \cdots m) \quad \Longrightarrow \quad(p \mid m \text { or } p \mid m \text { or } \cdots \text { or } p \mid m) \quad \Longrightarrow \quad p \mid m .
$$

By setting $a=m^{(q-1)}$ we have from part (b) that

$$
\left[\left(m^{(q-1)}\right)^{(p-1)}\right]_{p}=[1]_{p} \quad \Longrightarrow \quad\left[m^{(p-1)(q-1)}\right]_{p}=[1]_{p} \quad \Longrightarrow \quad p \mid\left(m^{(p-1)(q-1)}-1\right) .
$$

The same proof also gives $q \mid\left(m^{(p-1)(q-1)}-1\right)$. Then since $\operatorname{gcd}(p, q)=1$ (because p, q are non-equal prime numbers), part (a) with $a=p, b=q$ and $c=m^{(p-1)(q-1)}-1$ gives

$$
p q \mid\left(m^{(p-1)(q-1)}-1\right) \quad \text { and hence } \quad\left[m^{(p-1)(q-1)}\right]_{p q}=[1]_{p q} .
$$

