
Math 230 Fall 2018
Homework 6 Drew Armstrong

Problem 1. This problem is about the ring Z/17Z. Since gcd(8, 17) = 1 we know that the
element [8]17 ∈ Z/17Z has a multiplicative inverse.

(a) Use the Extended Euclidean Algorithm to find the inverse [8−1]17 ∈ Z/17Z.
(b) Use your answer from part (a) to solve the following equations for x, y, z ∈ Z:

[8x]17 = [2]17,

[8y]17 = [3]17,

[8z]17 = [4]17.

(a) Consider the set of triples k, `,m ∈ Z such that 8k + 17` = m. Starting with the easy
triples (0, 1, 17) and (1, 0, 8), we have the following table:

k ` m
0 1 17
1 0 8
−2 1 1

It follows that 8(−2) + 17(1) = 1, and hence

[8]17 · [−2]17 + [17]17 · [1]17 = [1]17

[8]17 · [−2]17 +������
[0]17 · [1]17 = [1]17

[8]17 · [−2]17 = [1]17.

In other words:

[8−1]17 = [−2]17 = [15]17.

(b) From part (a) we know that “dividing by 8” is the same as “multiplying by 15” mod 17.
Thus we have

[8x]17 = [2]17

[15]17 · [8x]17 = [15]17 · [2]17

[x]17 = [2 · 15]17 = [30]17 = [13]17,

and

[8y]17 = [3]17

[15]17 · [8y]17 = [15]17 · [3]17

[y]17 = [3 · 15]17 = [45]17 = [11]17,

and

[8z]17 = [4]17

[15]17 · [8z]17 = [15]17 · [4]17

[z]17 = [4 · 15]17 = [60]17 = [9]17.



Problem 2. In this problem you will give an induction proof of Fermat’s Little Theorem.
You may assume the following statement, which we proved in class: For all a, b, p ∈ Z with p
prime we have

[(a + b)p]p = [ap]p + [bp]p.

Now fix a prime p and for each integer n ∈ Z consider the following statement:

P (n) = “ [np]p = [n]p. ”

(a) Explain why the statements P (0) and P (1) are true.
(b) If P (n) is true, prove that P (−n) is true. [Hint: p = 2 is a special case.]
(c) If P (n) is true, prove that P (n + 1) is true.

(a) Since 0p = 0 and 1p = 1 we note that the following statements are true:

[0p]p = [0]p,

[1p]p = [1]p.

(b) Assuing that [np]p = [n]p, we will prove that [(−n)p]p = [−n]p.

Proof. There are two cases. Case 1: If p is odd then we have

[(−n)p]p = [(−1)pnp]p = [−np]p = [−1]p · [np]p = [−1]p · [n]p = [−n]p.

Case 2: If p is even then since p is prime we must have p = 2. Thus we want to show that
[(−n)2]2 = [−n]2. But note that [−1]2 = [1]2. Therefore we have

[(−n)2]2 = [(−1)2n2]2 = [n2]2 = [n]2 = [−1]2 · [n]2 = [−n]2.

�

(c) Assuming that [np]p = [n]p, we will prove that [(n + 1)p]p = [n + 1]p.

Proof. We assume that [(a+b)p]p = [ap]p+[bp]p for all a, b ∈ Z. (This is called the “Freshman’s
Dream.” The proof uses the Binomial Theorem and we did it in class.) Thus we have

[(n + 1)p]p = [np]p + [1p]p = [n]p + [1]p = [n + 1]p,

as desired. �

Problem 3. In this problem you will prove a formula related to the RSA Cryptosystem.

(a) Consider a, b, c ∈ Z with gcd(a, b) = 1. If a|c and b|c, prove that ab|c. [Hint: There
exist integers x, y ∈ Z such that ax + by = 1. Multiply both sides by c.]

(b) Consider a, p ∈ Z with p prime and with gcd(a, p) = 1 (i.e., with p - a). Prove that
[ap−1]p = [1]p. [Hint: Use Problem 2 and the fact that [a−1]p exists.]

(c) Consider m, p, q ∈ Z with p 6= q prime and with gcd(m, pq) = 1 (i.e., with p - m and
q - m). Prove that

[m(p−1)(q−1)]pq = [1]pq.

[Hint: Use part (b) to show that p|(m(p−1)(q−1) − 1) and q|(m(p−1)(q−1) − 1). You will
need to mention the extended version of Euclid’s Lemma. Then use part (a).]



(a) Proof. Consider a, b, c ∈ Z with a|c and b|c, so that c = ak and c = b` for some k, ` ∈ Z. If
gcd(a, b) = 1 then we know that there exist some (non-unique) x, y ∈ Z such that ax+ by = 1.
Multiplying both sides by c gives

c = cax + cby

= (b`)ax + (ak)by

= ab(`x + ky),

and hence ab|c. �

(b) Proof. Consider a, p ∈ Z with p prime and p - a. From Problem 2 we know that

[ap]p = [a]p.

But since gcd(a, p) = 1 we also know that the inverse [a−1]p exists. Multiplying both sides by
the inverse gives

[ap]p = [a]p

[a−1]p · [ap]p = [a−1]p · [a]p

[ap−1]p = [1]p.
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Alternate Proof. Consider a, p ∈ Z with p prime and p - a. From Problem 2 we know that
[ap]p = [a]p. By definition this means that

p|(ap − a) or, in other words, p|a(ap−1 − 1).

Then since p is prime and p - a we have from Euclid’s Lemma that

p|(ap−1 − a) or, in other words, [ap−1]p = [1]p.

�

(c) Proof. Consider m, p, q ∈ Z with p 6= q prime and with gcd(m, pq) = 1 (i.e., with p - m
and q - m.) Since p - m we also have p - m(q−1). Indeed, we have p - mk for any power k. This
follows from the contrapositive of Euclid’s Lemma:

p|(m ·m · · ·m) =⇒ (p|m or p|m or · · · or p|m) =⇒ p|m.

By setting a = m(q−1) we have from part (b) that

[(m(q−1))(p−1)]p = [1]p =⇒ [m(p−1)(q−1)]p = [1]p =⇒ p|(m(p−1)(q−1) − 1).

The same proof also gives q|(m(p−1)(q−1) − 1). Then since gcd(p, q) = 1 (because p, q are

non-equal prime numbers), part (a) with a = p, b = q and c = m(p−1)(q−1) − 1 gives

pq|(m(p−1)(q−1) − 1) and hence [m(p−1)(q−1)]pq = [1]pq.
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