Problem 1. This problem is about the ring $\mathbb{Z} / 17 \mathbb{Z}$. Since $\operatorname{gcd}(8,17)=1$ we know that the element $[8]_{17} \in \mathbb{Z} / 17 \mathbb{Z}$ has a multiplicative inverse.
(a) Use the Extended Euclidean Algorithm to find the inverse $\left[8^{-1}\right]_{17} \in \mathbb{Z} / 17 \mathbb{Z}$.
(b) Use your answer from part (a) to solve the following equations for $x, y, z \in \mathbb{Z}$:

$$
\begin{aligned}
& {[8 x]_{17}=[2]_{17},} \\
& {[8 y]_{17}=[3]_{17},} \\
& {[8 z]_{17}=[4]_{17} .}
\end{aligned}
$$

Problem 2. In this problem you will give an induction proof of Fermat's Little Theorem. You may assume that the following statement, which we proved in class: For all $a, b, p \in \mathbb{Z}$ with p prime we have

$$
\left[(a+b)^{p}\right]_{p}=\left[a^{p}\right]_{p}+\left[b^{p}\right]_{p} .
$$

Now fix a prime p and for each integer $n \in \mathbb{Z}$ consider the following statement:

$$
P(n)="\left[n^{p}\right]_{p}=[n]_{p} . "
$$

(a) Explain why the statements $P(0)$ and $P(1)$ are true.
(b) If $P(n)$ is true, prove that $P(-n)$ is true. [Hint: $p=2$ is a special case.]
(c) If $P(n)$ is true, prove that $P(n+1)$ is true.

Problem 3. In this problem you will prove a formula related to the RSA Cryptosystem.
(a) Consider $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. If $a \mid c$ and $b \mid c$, prove that $a b \mid c$. [Hint: There exist integers $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Multiply both sides by c.]
(b) Consider $a, p \in \mathbb{Z}$ with p prime and with $\operatorname{gcd}(a, p)=1$ (i.e., with $p \nmid a)$. Prove that $\left[a^{p-1}\right]_{p}=[1]_{p}$. [Hint: Use Problem 2 and the fact that $\left[a^{-1}\right]_{p}$ exists.]
(c) Consider $m, p, q \in \mathbb{Z}$ with $p \neq q$ prime and with $\operatorname{gcd}(m, p q)=1$ (i.e., with $p \nmid m$ and $q \nmid m)$. Prove that

$$
\left[m^{(p-1)(q-1)}\right]_{p q}=[1]_{p q} .
$$

[Hint: Use part (b) to show that $p \mid\left(m^{(p-1)(q-1)}-1\right)$ and $q \mid\left(m^{(p-1)(q-1)}-1\right)$. You will need to mention the extended version of Euclid's Lemma. Then use part (a).]

