
Math 230 Fall 2018
Homework 5 Drew Armstrong

Problem 1. In this problem you will give another proof that
√
d 6∈ Z⇒

√
d 6∈ Q for all d ∈ Z.

The key is to use unique prime factorization. For all n, p ∈ Z with p prime we will write pk‖n
to mean that pk|n and pk+1 - n.

(a) If d ∈ Z and
√
d 6∈ Z, prove that we have pk‖d for some prime p and odd integer k.

(b) Assume that we have
√
d = a/b, and hence a2 = db2, for some a, b ∈ Z. Derive a

contradiction by considering the multiplicity of p on both sides.

Proof. Suppose that d ∈ Z and
√
d 6∈ Z.

(a) Consider the prime factorization of d:

d = pd11 pd22 pd33 · · · .

If every exponent is even, say di = 2ki ≥ 0 for some ki ≥ 0, then we have

√
d =

(
p2k11 p2k22 p2k33 · · ·

)1/2
= pk11 pk22 pk33 · · · ∈ Z.

But this contradicts the fact that
√
d 6∈ Z. Hence there must exist some i such that di is odd.

(b) Now assume for contradiction that
√
d ∈ Q, say

√
d = a/b for some a, b ∈ Z. Consider the

prime factorizations:

a = pa11 pa22 pa33 · · · ,

b = pb11 pb22 pb33 · · · .

Multiplying both sides of
√
d = a/b by b and then squaring gives

a2 = db2

(pa11 pa22 pa33 · · · )
2 =

(
pd11 pd22 pd33 · · ·

)(
pb11 pb22 pb33 · · ·

)2

p2a11 p2a22 p2a33 · · · = pd1+2b1
1 pd2+2b2

2 pd3+2b3
3 · · ·

By uniqueness of prime factorization this implies that 2ai = di +2bi for all i, and in particular
that di = 2ai − 2bi = 2(ai − bi) is even for all i. This contradicts part (a). �

Problem 2. In this problem you will use induction to generalize Euclid’s lemma. Let p ∈ Z
be prime and for all integers n ≥ 1 consider the following statement:

P (n) = “ for all integers a1, . . . , an ∈ Z we have p|(a1a2 · · · an)⇒ (p|ai for some i). ”

(a) Explain why P (2) is a true statement.
(b) Assume for induction that P (n) is a true statement. In this case, prove that P (n + 1)

is also a true statement.

(a) The statement P (2) says that

“ for all integers a, b ∈ Z we have p|(ab)⇒ (p|a or p|b). ”



This is called Euclid’s Lemma. We already know that it is true.

(b) Now fix some n ≥ 2 and assume for induction that P (n) is a true statement. In this case
we want to prove that P (n+ 1) is a true statement. To be specific, we will prove that for any
n + 1 integers a1, a2, . . . , an+1 ∈ Z we have

p|(a1a2 · · · an+1) =⇒ ∃i ∈ {1, 2, . . . , n + 1}, p|ai.

Proof. So consider any integers a1, a2, . . . , an+1 ∈ Z and assume that

p|(a1a2 · · · an+1).

Then from P (2) we have

p|(a1 · · · an)an+1 =⇒ p|(a1 · · · an) or p|an+1.

If p|an+1 then we are done, so let us assume that p|(a1 · · · an). Then since P (n) is true we
conclude that p|ai for some i ∈ {1, 2, . . . , n}. In summary, we have shown that

(p|a1 or p|a2 or · · · or p|an) or p|an+1.

In other words, there exists some i ∈ {1, 2, . . . , n + 1} such that p|ai. �

Problem 3. In this problem you will give Euclid’s proof that there exist infinitely many
prime numbers. Assume for contradiction that there exist only finitely many prime numbers,
and call them

1 < p1 < p2 < p3 < · · · < pk.

Now consider the number N := p1p2 · · · pk + 1. You know from HW4 Problem 4 that there
exists a prime number p ∈ Z such that p|N . On the other hand, prove that p 6= pi for all i.
This is a contradiction.

Proof. Assume for contradiction that there exist only finitely many prime numbers, called

1 < p1 < p2 < p3 < · · · < pk.

Now consider the number N := p1p2 · · · pk + 1. We know from HW4 Problem 4 that there
exists some prime p such that p|N . By assumption, this prime must be in the set {p1, . . . , pk}.
In other words, we must have p = pi for some i ∈ {1, 2, . . . , k}. But then we have

• p|N and
• p|(p1 . . . pk),

which implies that p divides 1:
p| (N − p1 · · · pk) = 1.

This contradicts the fact that p is prime. (Recall that ±1 are not prime numbers.) �

Problem 4. Let ∼ be an equivalence relation on a set S and for each element x ∈ S let
[x] := {y ∈ S : x ∼ y} ⊆ S be its equivalence class. For all x, y ∈ S prove that the following
three statements are equivalent:

(1) x ∼ y,
(2) [x] = [y],
(3) [x] ∩ [y] 6= ∅.

[Hint: You need to prove some cycle. I recommend (1)⇒(2)⇒(3)⇒(1).]

Our proof will use the three axioms of equivalence:

(E1) ∀x ∈ S, x ∼ x,
(E2) ∀x, y ∈ S, x ∼ y ⇒ y ∼ x,



(E3) ∀x, y, z ∈ S, (x ∼ y ∧ y ∼ z)⇒ x ∼ z.

Proof. (1)⇒(2): Assume that x ∼ y. We will prove that [x] ⊆ [y] and [y] ⊆ [x].

• To see that [x] ⊆ [y], consider any z ∈ [x]. By definition this means that x ∼ z, and
hence z ∼ x from (E2). Then since z ∼ x and x ∼ y we have z ∼ y from (E3) and
then y ∼ z from (E2). It follows that z ∈ [y].
• To see that [y] ⊆ [x], consider any z ∈ [y]. By definition this means that y ∼ z. Then

since x ∼ y and y ∼ z we have x ∼ z from (E3), and hence z ∈ [x].

(2)⇒(3). Assume that [x] = [y]. We will prove that [x] ∩ [y] 6= ∅. But note that

[x] ∩ [y] = [x] ∩ [x] = [x]

and this set is not empty because x ∈ [x] from (E1).

(3)⇒(1). Assume that [x]∩ [y] 6= ∅, so there exists some z ∈ [x]∩ [y]. We will show that x ∼ y.
Indeed, since [x]∩ [y] ⊆ [x] we have z ∈ [x] and hence x ∼ z. Similarly, since [x]∩ [y] ⊆ [y] we
have z ∈ [y], hence y ∼ z and (E2) gives z ∼ y. Finally, since x ∼ z and z ∼ y we have x ∼ y
from (E3). �

Problem 5. Fix a nonzero integer n ∈ Z and recall that [a]n = [b]n means n|(a − b). Now
assume for some a, b, a′, b′ ∈ Z that [a]n = [a′]n and [b]n = [b′]n. In this case prove that

[a + b]n = [a′ + b′]n and [ab]n = [a′b′]n.

In other words: The addition and multiplication of integers mod n is “well-defined.”

Proof. Assume that [a]n = [a′]n and [b]n = [b′]n. By definition this means that

a− a′ = nk and b− b′ = n`

for some k, ` ∈ Z. Then we have

(a + b)− (a′ + b′) = (a− a′) + (b− b′) = nk + n` = n(k + `),

which implies that [a + b]n = [a′ + b′]n, and we have

ab− a′b′ = ab− (a− nk)(b− n`)

= ��ab−��ab + an` + bnk − n2k`

= n(a` + bk − nk`),

which implies that [ab]n = [a′b′]n. �


