Problem 1. In this problem you will give another proof that $\sqrt{d} \notin \mathbb{Z} \Rightarrow \sqrt{d} \notin \mathbb{Q}$ for all $d \in \mathbb{Z}$. The key is to use unique prime factorization. For all $n, p \in \mathbb{Z}$ with p prime we will write $p^k || n$ to mean that $p^k || n$ and $p^{k+1} \nmid n$.

- (a) If $d \in \mathbb{Z}$ and $\sqrt{d} \notin \mathbb{Z}$, prove that we have $p^k || d$ for some prime p and **odd** integer k.
- (b) Assume that we have $\sqrt{d} = a/b$, and hence $a^2 = db^2$, for some $a, b \in \mathbb{Z}$. Derive a contradiction by considering the multiplicity of p on both sides.

Proof. Suppose that $d \in \mathbb{Z}$ and $\sqrt{d} \notin \mathbb{Z}$.

(a) Consider the prime factorization of d:

$$d = p_1^{d_1} p_2^{d_2} p_3^{d_3} \cdots .$$

If every exponent is even, say $d_i = 2k_i \ge 0$ for some $k_i \ge 0$, then we have

$$\sqrt{d} = \left(p_1^{2k_1} p_2^{2k_2} p_3^{2k_3} \cdots\right)^{1/2} = p_1^{k_1} p_2^{k_2} p_3^{k_3} \cdots \in \mathbb{Z}.$$

But this contradicts the fact that $\sqrt{d} \notin \mathbb{Z}$. Hence there must exist some *i* such that d_i is odd.

(b) Now assume for contradiction that $\sqrt{d} \in \mathbb{Q}$, say $\sqrt{d} = a/b$ for some $a, b \in \mathbb{Z}$. Consider the prime factorizations:

$$a = p_1^{a_1} p_2^{a_2} p_3^{a_3} \cdots ,$$

$$b = p_1^{b_1} p_2^{b_2} p_3^{b_3} \cdots .$$

Multiplying both sides of $\sqrt{d} = a/b$ by b and then squaring gives

$$a^{2} = db^{2}$$
$$(p_{1}^{a_{1}}p_{2}^{a_{2}}p_{3}^{a_{3}}\cdots)^{2} = \left(p_{1}^{d_{1}}p_{2}^{d_{2}}p_{3}^{d_{3}}\cdots\right)\left(p_{1}^{b_{1}}p_{2}^{b_{2}}p_{3}^{b_{3}}\cdots\right)^{2}$$
$$p_{1}^{2a_{1}}p_{2}^{2a_{2}}p_{3}^{2a_{3}}\cdots = p_{1}^{d_{1}+2b_{1}}p_{2}^{d_{2}+2b_{2}}p_{3}^{d_{3}+2b_{3}}\cdots$$

By uniqueness of prime factorization this implies that $2a_i = d_i + 2b_i$ for all *i*, and in particular that $d_i = 2a_i - 2b_i = 2(a_i - b_i)$ is even for all *i*. This contradicts part (a).

Problem 2. In this problem you will use induction to generalize Euclid's lemma. Let $p \in \mathbb{Z}$ be prime and for all integers $n \ge 1$ consider the following statement:

P(n) = "for all integers $a_1, \ldots, a_n \in \mathbb{Z}$ we have $p|(a_1a_2\cdots a_n) \Rightarrow (p|a_i \text{ for some } i)$."

- (a) Explain why P(2) is a true statement.
- (b) Assume for induction that P(n) is a true statement. In this case, prove that P(n+1) is also a true statement.
- (a) The statement P(2) says that

" for all integers $a, b \in \mathbb{Z}$ we have $p|(ab) \Rightarrow (p|a \text{ or } p|b)$."

This is called Euclid's Lemma. We already know that it is true.

(b) Now fix some $n \ge 2$ and assume for induction that P(n) is a true statement. In this case we want to prove that P(n+1) is a true statement. To be specific, we will prove that for any n+1 integers $a_1, a_2, \ldots, a_{n+1} \in \mathbb{Z}$ we have

$$p|(a_1a_2\cdots a_{n+1}) \implies \exists i \in \{1, 2, \dots, n+1\}, p|a_i$$

Proof. So consider any integers $a_1, a_2, \ldots, a_{n+1} \in \mathbb{Z}$ and assume that

 $p|(a_1a_2\cdots a_{n+1}).$

Then from P(2) we have

$$p|(a_1\cdots a_n)a_{n+1} \Longrightarrow p|(a_1\cdots a_n) \text{ or } p|a_{n+1}.$$

If $p|a_{n+1}$ then we are done, so let us assume that $p|(a_1 \cdots a_n)$. Then since P(n) is true we conclude that $p|a_i$ for some $i \in \{1, 2, \ldots, n\}$. In summary, we have shown that

$$(p|a_1 \text{ or } p|a_2 \text{ or } \cdots \text{ or } p|a_n) \text{ or } p|a_{n+1}.$$

In other words, there exists some $i \in \{1, 2, ..., n+1\}$ such that $p|a_i$.

Problem 3. In this problem you will give Euclid's proof that there exist infinitely many prime numbers. Assume for contradiction that there exist only **finitely** many prime numbers, and call them

$$1 < p_1 < p_2 < p_3 < \dots < p_k.$$

Now consider the number $N := p_1 p_2 \cdots p_k + 1$. You know from HW4 Problem 4 that there exists a prime number $p \in \mathbb{Z}$ such that p|N. On the other hand, prove that $p \neq p_i$ for all *i*. This is a contradiction.

Proof. Assume for contradiction that there exist only **finitely** many prime numbers, called

$$1 < p_1 < p_2 < p_3 < \dots < p_k.$$

Now consider the number $N := p_1 p_2 \cdots p_k + 1$. We know from HW4 Problem 4 that there exists some prime p such that p|N. By assumption, this prime must be in the set $\{p_1, \ldots, p_k\}$. In other words, we must have $p = p_i$ for some $i \in \{1, 2, \ldots, k\}$. But then we have

- p|N and
- $p|(p_1\ldots p_k),$

which implies that p divides 1:

$$p|\left(N-p_1\cdots p_k\right)=1.$$

This contradicts the fact that p is prime. (Recall that ± 1 are not prime numbers.)

Problem 4. Let \sim be an equivalence relation on a set S and for each element $x \in S$ let $[x] := \{y \in S : x \sim y\} \subseteq S$ be its equivalence class. For all $x, y \in S$ prove that the following three statements are equivalent:

(1) $x \sim y$, (2) [x] = [y], (3) $[x] \cap [y] \neq \emptyset$.

[Hint: You need to prove some cycle. I recommend $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$.]

Our proof will use the three axioms of equivalence:

 $\begin{array}{l} (\text{E1}) \ \forall x \in S, x \sim x, \\ (\text{E2}) \ \forall x, y \in S, x \sim y \Rightarrow y \sim x, \end{array}$

(E3) $\forall x, y, z \in S, (x \sim y \land y \sim z) \Rightarrow x \sim z.$

Proof. (1) \Rightarrow (2): Assume that $x \sim y$. We will prove that $[x] \subseteq [y]$ and $[y] \subseteq [x]$.

- To see that $[x] \subseteq [y]$, consider any $z \in [x]$. By definition this means that $x \sim z$, and hence $z \sim x$ from (E2). Then since $z \sim x$ and $x \sim y$ we have $z \sim y$ from (E3) and then $y \sim z$ from (E2). It follows that $z \in [y]$.
- To see that $[y] \subseteq [x]$, consider any $z \in [y]$. By definition this means that $y \sim z$. Then since $x \sim y$ and $y \sim z$ we have $x \sim z$ from (E3), and hence $z \in [x]$.

(2) \Rightarrow (3). Assume that [x] = [y]. We will prove that $[x] \cap [y] \neq \emptyset$. But note that

$$[x] \cap [y] = [x] \cap [x] = [x]$$

and this set is not empty because $x \in [x]$ from (E1).

 $(3) \Rightarrow (1)$. Assume that $[x] \cap [y] \neq \emptyset$, so there exists some $z \in [x] \cap [y]$. We will show that $x \sim y$. Indeed, since $[x] \cap [y] \subseteq [x]$ we have $z \in [x]$ and hence $x \sim z$. Similarly, since $[x] \cap [y] \subseteq [y]$ we have $z \in [y]$, hence $y \sim z$ and (E2) gives $z \sim y$. Finally, since $x \sim z$ and $z \sim y$ we have $x \sim y$ from (E3).

Problem 5. Fix a nonzero integer $n \in \mathbb{Z}$ and recall that $[a]_n = [b]_n$ means n|(a-b). Now assume for some $a, b, a', b' \in \mathbb{Z}$ that $[a]_n = [a']_n$ and $[b]_n = [b']_n$. In this case prove that

$$[a+b]_n = [a'+b']_n$$
 and $[ab]_n = [a'b']_n$

In other words: The addition and multiplication of integers mod n is "well-defined."

Proof. Assume that $[a]_n = [a']_n$ and $[b]_n = [b']_n$. By definition this means that a - a' = nk and $b - b' = n\ell$

for some $k, \ell \in \mathbb{Z}$. Then we have

$$(a+b) - (a'+b') = (a-a') + (b-b') = nk + n\ell = n(k+\ell),$$

which implies that $[a + b]_n = [a' + b']_n$, and we have

$$ab - a'b' = ab - (a - nk)(b - n\ell)$$
$$= ab - ab + an\ell + bnk - n^2k\ell$$
$$= n(a\ell + bk - nk\ell),$$

which implies that $[ab]_n = [a'b']_n$.