Problem 1. In this problem you will give another proof that $\sqrt{d} \notin \mathbb{Z} \Rightarrow \sqrt{d} \notin \mathbb{Q}$ for all $d \in \mathbb{Z}$. The key is to use unique prime factorization. For all $n, p \in \mathbb{Z}$ with p prime we will write $p^{k} \| n$ to mean that $p^{k} \mid n$ and $p^{k+1} \nmid n$.
(a) If $d \in \mathbb{Z}$ and $\sqrt{d} \notin \mathbb{Z}$, prove that we have $p^{k} \| d$ for some prime p and odd integer k.
(b) Assume that we have $\sqrt{d}=a / b$, and hence $a^{2}=d b^{2}$, for some $a, b \in \mathbb{Z}$. Derive a contradiction by considering the multiplicity of p on both sides.

Proof. Suppose that $d \in \mathbb{Z}$ and $\sqrt{d} \notin \mathbb{Z}$.
(a) Consider the prime factorization of d :

$$
d=p_{1}^{d_{1}} p_{2}^{d_{2}} p_{3}^{d_{3}} \cdots
$$

If every exponent is even, say $d_{i}=2 k_{i} \geq 0$ for some $k_{i} \geq 0$, then we have

$$
\sqrt{d}=\left(p_{1}^{2 k_{1}} p_{2}^{2 k_{2}} p_{3}^{2 k_{3}} \cdots\right)^{1 / 2}=p_{1}^{k_{1}} p_{2}^{k_{2}} p_{3}^{k_{3}} \cdots \in \mathbb{Z}
$$

But this contradicts the fact that $\sqrt{d} \notin \mathbb{Z}$. Hence there must exist some i such that d_{i} is odd.
(b) Now assume for contradiction that $\sqrt{d} \in \mathbb{Q}$, say $\sqrt{d}=a / b$ for some $a, b \in \mathbb{Z}$. Consider the prime factorizations:

$$
\begin{aligned}
a & =p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}^{a_{3}} \cdots, \\
b & =p_{1}^{b_{1}} p_{2}^{b_{2}} p_{3}^{b_{3}} \cdots .
\end{aligned}
$$

Multiplying both sides of $\sqrt{d}=a / b$ by b and then squaring gives

$$
\begin{aligned}
a^{2} & =d b^{2} \\
\left(p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}^{a_{3}} \cdots\right)^{2} & =\left(p_{1}^{d_{1}} p_{2}^{d_{2}} p_{3}^{d_{3}} \cdots\right)\left(p_{1}^{b_{1}} p_{2}^{b_{2}} p_{3}^{b_{3}} \cdots\right)^{2} \\
p_{1}^{2 a_{1}} p_{2}^{2 a_{2}} p_{3}^{2 a_{3}} \cdots & =p_{1}^{d_{1}+2 b_{1}} p_{2}^{d_{2}+2 b_{2}} p_{3}^{d_{3}+2 b_{3}} \cdots
\end{aligned}
$$

By uniqueness of prime factorization this implies that $2 a_{i}=d_{i}+2 b_{i}$ for all i, and in particular that $d_{i}=2 a_{i}-2 b_{i}=2\left(a_{i}-b_{i}\right)$ is even for all i. This contradicts part (a).

Problem 2. In this problem you will use induction to generalize Euclid's lemma. Let $p \in \mathbb{Z}$ be prime and for all integers $n \geq 1$ consider the following statement:

$$
P(n)=\text { "for all integers } a_{1}, \ldots, a_{n} \in \mathbb{Z} \text { we have } p \mid\left(a_{1} a_{2} \cdots a_{n}\right) \Rightarrow\left(p \mid a_{i} \text { for some } i\right) . "
$$

(a) Explain why $P(2)$ is a true statement.
(b) Assume for induction that $P(n)$ is a true statement. In this case, prove that $P(n+1)$ is also a true statement.
(a) The statement $P(2)$ says that
" for all integers $a, b \in \mathbb{Z}$ we have $p \mid(a b) \Rightarrow(p \mid a$ or $p \mid b)$."

This is called Euclid's Lemma. We already know that it is true.
(b) Now fix some $n \geq 2$ and assume for induction that $P(n)$ is a true statement. In this case we want to prove that $P(n+1)$ is a true statement. To be specific, we will prove that for any $n+1$ integers $a_{1}, a_{2}, \ldots, a_{n+1} \in \mathbb{Z}$ we have

$$
p\left|\left(a_{1} a_{2} \cdots a_{n+1}\right) \quad \Longrightarrow \quad \exists i \in\{1,2, \ldots, n+1\}, p\right| a_{i} .
$$

Proof. So consider any integers $a_{1}, a_{2}, \ldots, a_{n+1} \in \mathbb{Z}$ and assume that

$$
p \mid\left(a_{1} a_{2} \cdots a_{n+1}\right)
$$

Then from $P(2)$ we have

$$
p\left|\left(a_{1} \cdots a_{n}\right) a_{n+1} \Longrightarrow p\right|\left(a_{1} \cdots a_{n}\right) \text { or } p \mid a_{n+1} .
$$

If $p \mid a_{n+1}$ then we are done, so let us assume that $p \mid\left(a_{1} \cdots a_{n}\right)$. Then since $P(n)$ is true we conclude that $p \mid a_{i}$ for some $i \in\{1,2, \ldots, n\}$. In summary, we have shown that

$$
\left(p \mid a_{1} \text { or } p \mid a_{2} \text { or } \cdots \text { or } p \mid a_{n}\right) \text { or } p \mid a_{n+1} .
$$

In other words, there exists some $i \in\{1,2, \ldots, n+1\}$ such that $p \mid a_{i}$.
Problem 3. In this problem you will give Euclid's proof that there exist infinitely many prime numbers. Assume for contradiction that there exist only finitely many prime numbers, and call them

$$
1<p_{1}<p_{2}<p_{3}<\cdots<p_{k} .
$$

Now consider the number $N:=p_{1} p_{2} \cdots p_{k}+1$. You know from HW4 Problem 4 that there exists a prime number $p \in \mathbb{Z}$ such that $p \mid N$. On the other hand, prove that $p \neq p_{i}$ for all i. This is a contradiction.

Proof. Assume for contradiction that there exist only finitely many prime numbers, called

$$
1<p_{1}<p_{2}<p_{3}<\cdots<p_{k} .
$$

Now consider the number $N:=p_{1} p_{2} \cdots p_{k}+1$. We know from HW4 Problem 4 that there exists some prime p such that $p \mid N$. By assumption, this prime must be in the set $\left\{p_{1}, \ldots, p_{k}\right\}$. In other words, we must have $p=p_{i}$ for some $i \in\{1,2, \ldots, k\}$. But then we have

- $p \mid N$ and
- $p \mid\left(p_{1} \ldots p_{k}\right)$,
which implies that p divides 1 :

$$
p \mid\left(N-p_{1} \cdots p_{k}\right)=1 .
$$

This contradicts the fact that p is prime. (Recall that ± 1 are not prime numbers.)
Problem 4. Let \sim be an equivalence relation on a set S and for each element $x \in S$ let $[x]:=\{y \in S: x \sim y\} \subseteq S$ be its equivalence class. For all $x, y \in S$ prove that the following three statements are equivalent:
(1) $x \sim y$,
(2) $[x]=[y]$,
(3) $[x] \cap[y] \neq \emptyset$.
[Hint: You need to prove some cycle. I recommend $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(1)$.
Our proof will use the three axioms of equivalence:
(E1) $\forall x \in S, x \sim x$,
(E2) $\forall x, y \in S, x \sim y \Rightarrow y \sim x$,
(E3) $\forall x, y, z \in S,(x \sim y \wedge y \sim z) \Rightarrow x \sim z$.
Proof. $(1) \Rightarrow(2):$ Assume that $x \sim y$. We will prove that $[x] \subseteq[y]$ and $[y] \subseteq[x]$.

- To see that $[x] \subseteq[y]$, consider any $z \in[x]$. By definition this means that $x \sim z$, and hence $z \sim x$ from (E2). Then since $z \sim x$ and $x \sim y$ we have $z \sim y$ from (E3) and then $y \sim z$ from (E2). It follows that $z \in[y]$.
- To see that $[y] \subseteq[x]$, consider any $z \in[y]$. By definition this means that $y \sim z$. Then since $x \sim y$ and $y \sim z$ we have $x \sim z$ from (E3), and hence $z \in[x]$.
$(2) \Rightarrow(3)$. Assume that $[x]=[y]$. We will prove that $[x] \cap[y] \neq \emptyset$. But note that

$$
[x] \cap[y]=[x] \cap[x]=[x]
$$

and this set is not empty because $x \in[x]$ from (E1).
$(3) \Rightarrow(1)$. Assume that $[x] \cap[y] \neq \emptyset$, so there exists some $z \in[x] \cap[y]$. We will show that $x \sim y$. Indeed, since $[x] \cap[y] \subseteq[x]$ we have $z \in[x]$ and hence $x \sim z$. Similarly, since $[x] \cap[y] \subseteq[y]$ we have $z \in[y]$, hence $y \sim z$ and (E2) gives $z \sim y$. Finally, since $x \sim z$ and $z \sim y$ we have $x \sim y$ from (E3).

Problem 5. Fix a nonzero integer $n \in \mathbb{Z}$ and recall that $[a]_{n}=[b]_{n}$ means $n \mid(a-b)$. Now assume for some $a, b, a^{\prime}, b^{\prime} \in \mathbb{Z}$ that $[a]_{n}=\left[a^{\prime}\right]_{n}$ and $[b]_{n}=\left[b^{\prime}\right]_{n}$. In this case prove that

$$
[a+b]_{n}=\left[a^{\prime}+b^{\prime}\right]_{n} \quad \text { and } \quad[a b]_{n}=\left[a^{\prime} b^{\prime}\right]_{n}
$$

In other words: The addition and multiplication of integers mod n is "well-defined."
Proof. Assume that $[a]_{n}=\left[a^{\prime}\right]_{n}$ and $[b]_{n}=\left[b^{\prime}\right]_{n}$. By definition this means that

$$
a-a^{\prime}=n k \quad \text { and } \quad b-b^{\prime}=n \ell
$$

for some $k, \ell \in \mathbb{Z}$. Then we have

$$
(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right)=n k+n \ell=n(k+\ell)
$$

which implies that $[a+b]_{n}=\left[a^{\prime}+b^{\prime}\right]_{n}$, and we have

$$
\begin{aligned}
a b-a^{\prime} b^{\prime} & =a b-(a-n k)(b-n \ell) \\
& =a b-a b+a n \ell+b n k-n^{2} k \ell \\
& =n(a \ell+b k-n k \ell),
\end{aligned}
$$

which implies that $[a b]_{n}=\left[a^{\prime} b^{\prime}\right]_{n}$.

