Rational Numbers (Fractions)

We have used rational numbers but we haven't defined them yet.
What is a fraction?
Given $a, b \in \mathbb{Z}$ with $k \neq 0$ we define an abstract symbol:

$$
\frac{a}{b}
$$

We declare rules for "multiplying" and "adding" abstract symbols:

$$
\begin{aligned}
& \frac{a}{b} \cdot \frac{c}{d}{ }^{\prime \prime}:=\frac{a c}{b d} " \\
& \frac{a}{b}+\frac{c}{b}+:=\frac{a d+b c}{b d}
\end{aligned}
$$

We declare when two abstract symbols are "equal":

$$
" \frac{a}{b} "=\frac{c}{d} " \Leftrightarrow a d=b c \text {. }
$$

Definition: The set

$$
\mathbb{Q} i=\left\{\frac{a}{b}: \quad a, b \in \mathbb{R}, b \neq 0\right\}
$$

is called the system of rational numbers.
We can think of \mathbb{Z} as a subset of Q by identifying

$$
n \in 2 \Longleftrightarrow \frac{n}{1} \in \mathbb{Q}
$$

The benefit of \mathbb{Q} is that we can divide by nonzero elements.

If $x=\frac{a}{b} \neq 0$, then $a \neq 0$, hence the symbol $\frac{b}{a}$ exists and we have

$$
\frac{a}{b} \cdot \frac{b}{a}=1
$$

Every nonzero rational number has a multiplicative inverse.

Note that fractions do not have a unique representation:

$$
\frac{-3}{4}=\frac{3}{-4}=\frac{6}{-8}=\frac{-6}{8}=\text { etc }
$$

Q: Does each $x \in \mathbb{Q}$ have a best representation?

We will say that $x=a / b$ is in lowest terms if

- $b>0$
- $\operatorname{gcd}(a, b)=1$

Theorem: Every $x \in \mathbb{Q}$ can be represented ceniquely in lowest terms.

Remark: We have already used this when we proved that $\sqrt{2} \notin \mathbb{Q}$. But we never proved it

Proof of Existence
Let $x=a / b \in \mathbb{X}$. We can assume that $b>0$, otherwise we just write $a / b=(-a) /(-b)$
[Note: $\frac{a}{b}=\frac{-a}{-b}$ because $a(-b)=(-a) b$.]
Now suppose that $d=\operatorname{gcd}(a, b)$ with $a=d a^{\prime}$ and $b=d b^{\prime}$. Then we have

$$
\gamma=\frac{a}{b}=\frac{d a^{\prime}}{d b^{\prime}}=\frac{a^{\prime}}{b^{\prime}}
$$

because $d a^{\prime} b^{\prime}=d b^{\prime} a^{\prime}$. Since $b>0$ and $d>0$ we have bo >0.

We claim that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$.
Indeed, by Bézout's Identity $\exists x, y \in \lambda$ such that

$$
\begin{aligned}
& d=a x+b y \\
& d=d a^{\prime} x+d b^{\prime} y \\
& d=d\left(a^{\prime} x+b^{\prime} y\right) \\
& 1=a^{\prime} x+b^{\prime} y .
\end{aligned}
$$

Now any common divisor of a^{\prime} and b^{\prime} must divide 1 . [Suppose $a^{\prime}=R a^{\prime \prime}$ and $k^{\prime}=k b^{\prime \prime}$. Then

$$
\begin{aligned}
1 & =a^{\prime} x+b^{\prime} y \\
& =k q^{\prime \prime} x+k b^{\prime \prime} y \\
& =k\left(a^{\prime \prime} x+b^{\prime \prime} y\right)
\end{aligned}
$$

Hence $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$ and $x=a^{\prime} / 1 b^{\prime}$ is in lowest terns.

Proof of Uniqueness:
Suppose that $x=\frac{a_{1}}{t_{1}}=\frac{a_{2}}{b_{2}}$ with

- $b_{1}>0, b_{2}>0$
- $\operatorname{gcd}\left(a_{1}, b_{1}\right)=\operatorname{gcd}\left(a_{2}, b_{2}\right)=1$.

We wont to show that $a_{1}=a_{2}$ and $t_{1}=b_{2}$.
Since $a_{1} / b_{1}=a_{2} / b_{2}$ we have

$$
a_{1} b_{2}=a_{2} b_{1}
$$

We claim that $b_{1} b_{2}$.

Indeed, since $\operatorname{gcd}\left(a_{2}, b_{2}\right)=1 \quad \exists x, y \in \mathbb{Z}$ such that

$$
1=a_{2} x+b_{2} y
$$

Multiply both sides by b_{1} to get

$$
\begin{aligned}
b_{1} & =a_{2} b_{1} x+b_{2} b_{1} y \\
& =a_{1} b_{2} x+b_{2} b_{1} y \\
& =b_{2}\left(a_{1} x+b_{1} y\right)
\end{aligned}
$$

Hence $b_{1} b_{2}$. And similarly b_{2} / b_{1}.
so we have $b_{1}=s b_{2}$ and $b_{2}=t b_{1}$ for some $s, t \in \lambda$. Hence

$$
\begin{aligned}
& b_{1}=s b_{2}=s t b_{1} \\
\Rightarrow & b_{1}-s t b_{1}=0 \\
\Longrightarrow & (1-s t) b_{1}=0
\end{aligned}
$$

since $b \neq 0$ we jet $1-5 t=0$ or $s t=1$, We conclude that $s_{1} t= \pm 1$, hence $t_{1}= \pm t_{2}$
since $b_{1}>0$ and $b_{2}>0$ by assumption, we get $b_{1}=b_{2}$, and

$$
a_{1} b_{1}=a_{2} b_{2}=a_{2} b_{1} \Rightarrow a_{1}=a_{2}
$$

Another proof that fractions can be written in lowest terms. This time we will use unique prime factorization.

Today: More applications of F.T.A.
Let $1<p_{1}<p_{2}<p_{3}<\cdots$ be the sequence of positive primes. Given an integer $n \geqslant 1$, the F.T. A. says there exist unique integers $n_{i} \geqslant 0$ (almost all of them zero) such that

$$
n=p_{1}^{n_{1}} p_{2}^{n_{2}} p_{3}^{n_{3}} p_{4}^{n_{4}} \cdots
$$

For many purposes we con replace n by its sequence of exponents.

$$
n=\left[n_{1}, n_{2}, n_{3}, \ldots\right]^{\prime \prime}
$$

This language is incredibly useful for proving theorems of number theory. Fir example, suppose that a \& b are positive integers with exponents

$$
\begin{aligned}
& a=\left[a_{1}, a_{2}, a_{3}, \ldots\right] \\
& b=\left[b_{1}, b_{2}, b_{3}, \ldots\right]
\end{aligned}
$$

Then the product $a b$ has exponents

$$
a b=\left[a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}, \ldots\right]
$$

We con also express divisibility very easily by noting that
$a \mid b \Leftrightarrow \quad a_{i} \leqslant b_{i}$ for all i.
[Q: Is there a nice way to express the exponents of the sum $a+b$?

A: No. This is very messy. The exponents only play well with "multiplicative" properties of the integers.

Let's express the ged in this language.
Let $a=\left[a_{1}, a_{2}, \ldots\right]$ \& $b=\left[b_{1}, b_{2}, \ldots\right]$ as before. If $d=\left[d_{1}, d_{2}, \ldots\right]$ is any common divisor then we have

$$
\begin{array}{llll}
d \mid a & \Longrightarrow d_{i} \leqslant a_{i} & \forall i \\
d \mid b & \Longrightarrow & d_{i} \leq b_{i} & \forall i
\end{array}
$$

hence $d_{i} \leqslant \min \left(a_{i}, b_{i}\right) \forall i$. Thus the greatest integer d with this property is given by

$$
d_{i}=\min \left(a_{i}, b_{i}\right) \forall i
$$

Using the exponent notation gives

$$
\operatorname{gcd}(a, b)=\left[\min \left(a_{1}, b_{1}\right), \min \left(a_{2}, b_{2}\right), \cdots\right]
$$

By analogy, the least common multiple of a \& b is given by

$$
\operatorname{lcm}(a, b)=\left[\max \left(a_{1}, b_{1}\right), \max \left(a_{2}, b_{2}\right), \cdots\right]
$$

This allows us to prove a nice theorem.
A Theorem: Given positive integers a\& b,

$$
a \cdot b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) .
$$

Proof: The exponents of ak are

* $a_{i}+b_{i}$
and the exponents of $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$ are
**

$$
\min \left(a_{i}, b_{i}\right)+\max \left(a_{i}, b_{i}\right)
$$

Observe that the numbers $*$ \& $* *$ are always equal.

Remarks:

- It's up to you to decide what happens when $a \& b$ are negative or zero.
- This theorem says that

$$
\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}
$$

which allows us to compute the $l \mathrm{~cm}$ using the Euclidean Algorithm:

- There is also an analogue of Bézout's Identity for lem:

$$
a \mathbb{Z} \cap b \mathbb{Z}=\operatorname{lcm}(a, b) \mathbb{Z}
$$

The exponent notation also gives us a convenient way to deal with rational numbers. Recall that we defined

$$
\mathbb{Q}=\{[a, b]: a, b \in \mathbb{C} \text { with } b \neq 0\} \text {. }
$$

Where the elements are "abstract symbols" satisfying

$$
[a, b]=[c, d] \Leftrightarrow \text { ad }=b c \text {. }
$$

You are probably more accustomed to writing the abstract symbols as

$$
[a, b]=u \frac{a}{b} \text { ", }
$$

so Let's switch to that notation.

One theorem that we've used a lot but haven't proved yet is that every fraction can be written uniquely in "Lowest terms". Let's use the F.T.A. to prove this.

A Theorem: Consider a fraction $a / b \in \mathbb{X}$. Then there exist unique $c, d \in \mathbb{Z}$ with $d>0$ and $\overline{\operatorname{gcl}(c, d)}=1$ such that

$$
\frac{a}{b}=\frac{c}{d} \quad \text {, i.e., } \quad a d=b c \text {. }
$$

Proof: We'll only deal with the case when a, b, c, d are positive. The other cases follow easily from this. So consider the prime factorizations

$$
\begin{aligned}
& a=\left[a_{1}, a_{2}, \ldots\right] \\
& b=\left[b_{1}, b_{2}, \ldots\right] \\
& c=\left[c_{1}, c_{2}, \ldots\right] \\
& d=\left[d_{1}, d_{2}, \ldots\right]
\end{aligned}
$$

Given a \& b we want to find coprime c\& d such that

$$
\begin{aligned}
a d=b c, \quad i . e, \quad a_{i}+d_{i} & =b_{i}+c_{i} \forall i \\
a_{i}-b_{i} & =c_{i}-d_{i} \forall i .
\end{aligned}
$$

What does it mean for $c \& d$ to be coprime? It means that $\operatorname{gcd}(c, d)=1$, $i e_{\text {, }}, \min \left(c_{i}, d_{i}\right)=0 \forall$ i. And there is a unique way to achieve this:

- If $a_{i}-b_{i}<0$ we define

$$
c_{i}=0 \quad \& \quad d_{i}=-\left(a_{i}-b_{i}\right)>0
$$

- If $a_{i}-b_{i}=0$ we define

$$
c_{i}=0 \quad \& \quad d_{i}=0
$$

- If $a_{i}-b_{i}>0$ we define

$$
c_{i}=a_{i}-b_{i}>0 \quad \& \quad d_{i}=0
$$

That was kind of abstract so Let's do an example: write $630 / 825 \in \mathbb{C}$ in lowest terms.

We have prime factorizations

$$
\begin{aligned}
& 630=2^{1} \cdot 3^{2} \cdot 5^{1} \cdot 7^{1}=[1,2,1,1,0,0, \cdots] \\
& 825=3^{1} \cdot 5^{2} \cdot 11^{1}=[0,1,2,0,1,0,0, \cdots]
\end{aligned}
$$

Applying the definitions from the proof gives

$$
\frac{[1,2,1,1,0,0, \cdots]}{[0,1,2,0,1,0, \ldots]}=\frac{[1,1,0,1,0,0, \cdots]}{[0,0,1,0,1,0, \ldots]}
$$

or in other words

$$
\begin{aligned}
\frac{630}{825} & =\frac{2^{1} \cdot 3^{2} \cdot 5^{1} \cdot 7^{1}}{8^{1} \cdot 5^{2} \cdot 11^{1}} \\
& =\frac{2^{1} \cdot 3^{1} \cdot 7^{1}}{5^{1} \cdot 11^{1}}=\frac{42}{55}
\end{aligned}
$$

Note that $42 / 55$ is in lowest terms because the numerator and denominator have no common prime factor.

Remark: Writing fractions in lowest terms allows us to extend the "prime exponent" notation to rational numbers as follows

$$
\begin{aligned}
\frac{42}{55} & =\frac{2^{1} \cdot 3^{1} \cdot 7^{1}}{5^{1} \cdot 11^{1}} \\
& =2^{1} \cdot 3^{1} \cdot 5^{-1} \cdot 7^{1} \cdot 11^{-1} \cdot \cdots \\
& =[1,1,-1,1,-1,0,0, \cdots]
\end{aligned}
$$

That's kind of cute, right?

Equivalence Relations

We have seen how the number system

$$
\mathbb{Q}=\left\{{ }^{\prime} a^{\prime \prime}: \quad a, b \in \mathbb{R}, b \neq 0\right\}
$$

is constructed from the integers \mathbb{Z}
Today we will use \mathbb{Z} to construct a more unusual number systern

First we need a new logical concept
Definition: let S be a set and consider the set

$$
S^{2}:=\{(a, b) ; a, b \in S\}
$$

of ordered pairs from S
Example: The Cartesian plane \mathbb{R}^{2}] Now consider a suloset $R \subseteq S^{2}$

We will use the notation

$$
\begin{aligned}
& a \approx_{R} b^{\prime \prime} \Leftrightarrow(a, b) \in R \\
& a \not \nsim R^{b} \Leftrightarrow(a, b) \notin R
\end{aligned}
$$

and we say

$$
\begin{aligned}
& " a \approx_{R} b "=" a \text { is related to } b " \\
& " a \neq R b "=" a \text { is NDT related to } k \text { " }
\end{aligned}
$$

We say that \approx_{R} is an equivalence relation if the following axioms hold

$$
[E 1) \forall a \in S, a \approx_{R} a \text {. "reflexive" }
$$

(E2) $\quad \forall a, b \in S$,
$a \approx_{R} b \Rightarrow b \approx_{R} a \quad$ "symmetric"
(ES) $\forall a, b, c \in S$,
$a \approx_{R} b A N D \quad b \approx_{R} c \Rightarrow a \approx_{R} c$.
"transitive"

The idea of equivalence relation models the properties of " $=$ " but it is more general.

Example: Consider the set

$$
\mathbb{Q}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}
$$

We define a relation on \mathbb{Q} by

$$
\frac{a}{b} \approx \frac{c}{d} \Longleftrightarrow a d=b c
$$

Prove that \approx is an equivalence relation on \mathbb{Q}

Pros:
(E1) Given $\frac{a}{b} \in \mathbb{C l}$ we have

$$
\frac{a}{b} \approx \frac{9}{b} \text { because } a b=b a
$$

(E2) Given $\frac{a}{b}, \frac{c}{d} \in \mathbb{C l}$.
Assume that $\frac{a}{b} \approx \frac{c}{d}$ i
i.e. $a d=b c$. Then we also have

$$
\frac{c}{d} \approx \frac{a}{b} \text { because } c k=b_{c}=a d=d a
$$

(E3) Consider $\frac{a}{b}, \frac{c}{d}, \frac{e}{f} \in \mathbb{C}$ such that

$$
\frac{a}{b} \approx \frac{c}{d}, \text { ie, ad }=b c
$$

and $\frac{c}{d} \approx \frac{e}{f}$, ie. $c f=d e$
Then we also have $\frac{G}{10} \approx \frac{e}{f}$ because.

$$
\begin{aligned}
a d & =b c \\
\Rightarrow a d f & =b c f \\
\Rightarrow a \not d f & =b d e . \quad \text { (cancellation) } \\
\Rightarrow a f & =b e
\end{aligned}
$$

Notation: Given $\frac{a}{b} \in \mathbb{C}$; let

$$
\left[\frac{a}{b}\right]:=\left\{\frac{c}{d} \in \mathbb{C}: \frac{a}{b} \approx \frac{c}{d}\right\}
$$

This is culled the equivalence class of $\frac{a}{b}$.

Example;

$$
\left[\frac{1}{2}\right]=\left\{\frac{1}{2}, \frac{-1}{-2}, \frac{2}{4}, \frac{-2}{-4}, \frac{3}{6}, \frac{-3}{-6}, \text { etc... }\right\}
$$

In this language we can say

$$
\left[\frac{a}{b}\right]=\left[\frac{c}{d}\right] \Leftrightarrow \frac{a}{b} \approx \frac{c}{d}
$$

They are equivalent if and only if they generate the same class.

In a situation like this, we would like to have a distinguished representative from each class

Recall Prop. 5.11 ("Lowest Terms")
For all $x \in \mathbb{Q}, \exists$! (there exists unique) class representative of the form

$$
\begin{aligned}
& {[x] }=\left[\frac{a}{b}\right], \text { where } \\
& \Leftrightarrow d>0 \\
& \therefore g c d(a, b)=1
\end{aligned}
$$

Then arithmetic in $\mathbb{C l}$ goes some Thing like this:

$$
\begin{aligned}
{\left[\frac{1}{3}\right]+\left[\frac{1}{6}\right] } & =\left[\frac{16+1: 3}{3 \cdot 6}\right] \\
& =\left[\frac{9}{18}\right]=\left[\frac{1}{2}\right]
\end{aligned}
$$

wait a Minute! There is a possible problem.
Given $\left[\frac{a}{b}\right]$ and $\left[\frac{c}{d}\right]$ we DEFINE

$$
\left[\frac{a}{b}\right]+\left[\frac{c}{d}\right]:=\left[\frac{a d+b c}{b d}\right]
$$

but how do we know that this makes sense? ie. glen $\left[\frac{a}{b}\right]=\left[\frac{a^{\prime}}{b^{\prime}}\right]$ and $\left[\frac{c}{d}\right]=\left[\frac{c^{\prime}}{d}\right]$, how do we know that

$$
\left[\frac{a}{b}\right]+\left[\frac{c}{d}\right]=\left[\frac{a^{\prime}}{b^{\prime}}\right]+\left[\frac{c^{\prime}}{d^{\prime}}\right]
$$

Answer: we don't. It needs to be proved!
Proof: We are given $a b^{\prime}=a^{\prime} b$ and $c d^{\prime}=c^{\prime} d$. we wont to show

$$
\left[\frac{a d+b c}{b d}\right]=\left[\frac{a^{\prime} d^{\prime}+b^{\prime} c^{\prime}}{b^{\prime} d^{\prime}}\right]
$$

Indeed, we have

$$
\begin{aligned}
(a d+b c) b^{\prime} d^{\prime} & =a d b^{\prime} d^{\prime}+b c b^{\prime} d^{\prime} \\
& =a b^{\prime} d d^{\prime}+c d^{\prime} b b^{\prime} \\
& =a^{\prime} b d d^{\prime}+\frac{c^{\prime} d}{} b b^{\prime} \\
& =a^{\prime} d^{\prime} b d+b^{\prime} c^{\prime} b d \\
& =\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right) b d .
\end{aligned}
$$

Good News/Bad News
Good: Addition of fractions is well-defined.
Bal: We needed to prove it.
Exercise: Check that multiplication of fractions is well-defined. I

Modular Arithmetic

Recall: Last time we constructed the number system \mathbb{Q} from the integers 2 by defining a relation on abstract symbols

$$
\frac{a}{b} \approx \frac{c}{d} \quad \Longleftrightarrow \text { ad }=b c
$$

We proved that \approx is an equivalence because it satisfies

$$
\begin{gathered}
\text { (EN) } \forall a, b \in \lambda, b \neq 0 \text {, we lucre } \\
\frac{a}{b} \approx \frac{a}{b} \quad \text { "reflexive }
\end{gathered}
$$

$$
\text { (ER) } \forall a, b, c i d \in \lambda, b \neq D, d \neq 0
$$

$$
\frac{a}{b} \approx \frac{c}{d} \quad \Rightarrow \quad \frac{c}{d} \approx \frac{9}{b} \text { "symmetric" }
$$

(ES) $\forall a, b, c, d, e, f \in X, b \neq 0, d \neq 0, f \neq 0$.

$$
\frac{a}{b} \approx \frac{c}{d} A N D \frac{c}{d} \approx \frac{e}{f} \Rightarrow \frac{a}{b} \approx \frac{e}{f}
$$

"transitive".
Then for all fractions $\frac{a}{b} \in \mathbb{Q}$ we define equivalence class

$$
\left[\frac{a}{b}\right]=\left\{\frac{c}{d} \in \mathbb{Q}: \frac{a}{b} \approx \frac{c}{d}\right\}
$$

Example

$$
\left[\frac{1}{2}\right]=\left\{\frac{1}{2}, \frac{-1}{-2}, \frac{2}{4}, \frac{-2}{4}, \frac{3}{6}, \frac{-3}{6}, \ldots\right\}
$$

We define how to mintiply and add equivalence classes

$$
\begin{aligned}
& {\left[\frac{a}{b}\right] \cdot\left[\frac{c}{d}\right]:=\left[\frac{a c}{b d}\right]} \\
& {\left[\frac{a}{b}\right]+\left[\frac{c}{d}\right]=\left[\frac{a d+b c}{b d}\right]}
\end{aligned}
$$

and then we have to prove that the definition makes sense

Example: $\left[\frac{1}{3}\right]=\left[\frac{2}{6}\right]$ and $\left[\begin{array}{l}1 \\ 6\end{array}\right]=\left[\frac{-1}{-6}\right]$

$$
\begin{aligned}
& {\left[\frac{1}{3}\right]+\left[\frac{1}{6}\right]=\left[\frac{1 \cdot 6+3 \cdot 1}{3 \cdot 6}\right]=\left[\frac{9}{18}\right]} \\
& {\left[\frac{2}{6}\right]+\left[\frac{-1}{-6}\right]=\left[\frac{2(-6)+6(-1)}{6(-6)}\right]=\left[\frac{-18}{-36}\right]}
\end{aligned}
$$

But that's okay becourse

$$
\left[\frac{9}{18}\right]=\left[\frac{-18}{-36}\right]=\left[\frac{1}{2}\right]
$$

We proved last time that it always works.

Today well construct a more unusual number system from \mathbb{R}.

Fix $O \neq n \in \mathbb{Z}$ and define a relation on \mathbb{Z}.

$$
\because a \equiv_{n} b^{\prime \prime} \Longleftrightarrow n(a-b)^{\prime \prime}
$$

Claim: It's an equivalence.
Prof:
(E1) $\forall a \in \lambda$ we have
$a \equiv a$ becance $n \mid(a-a)=0$
(E2) Given $a, b \in \mathbb{R}$, assume $a \equiv_{n} b$, i.c. $n \mid(a-b), 5 a y(a-b)=n k$ Then we have

$$
\begin{aligned}
& (b-a)=-(a-b)=n(-k) \\
& \Rightarrow n \mid(b-a) \Rightarrow l_{0} \equiv_{n} a .
\end{aligned}
$$

(E3) Given $a, b, c \in R$ assume That

$$
a \equiv_{n} b \quad a n d \quad b \equiv_{n} c \text {. }
$$

i.e. we have $a-b=n k, b-c=n l$ for some $k, l \in 72$. Then we have

$$
\begin{aligned}
& a-c=(a-b)+(b-c) \\
&=n k+n l=n(k+l) \\
& \Rightarrow n \mid a-c \Rightarrow a \equiv_{n} c
\end{aligned}
$$

Alternate natation

$$
" a \equiv n " \Leftrightarrow a \equiv b(\bmod n)
$$

Say" a is congruent to 6 modulo n For all $a \in \mathbb{Z}$ define the congruence class

$$
\left.\begin{array}{rl}
{[a]_{n}} & :
\end{array}=\left\{b \in \mathbb{R}: a \equiv_{n} b\right\},\right\}
$$

Then we have a convenient notation

$$
a \equiv_{n} b \quad \Leftrightarrow \quad[a]_{n}=[b]_{n}
$$

Note that every congruence class has a standard representative in the range $0,1,2, \ldots, n-1$

Proof: Division Algorithm
Definition: The set of congmence classes

$$
A / n:=\left\{[0]_{n},[1]_{n},[2]_{n}, \cdots,[n-1]_{n}\right\}
$$

is called the number system of integers $m s$ duns n.

We will add and multiply classes as follows:

$$
\begin{aligned}
& {[a]_{n}+[b]_{n}:=[a+b]_{n}} \\
& {[a]_{n}[b]_{n}:=[a b]_{n}}
\end{aligned}
$$

On HW5 you will prove that these operations are well defined.

Example: $[-1]_{7}=[6]_{7},[-3]_{7}=[4]_{7}$,

$$
\begin{aligned}
& {[-1]_{7}[-3]_{7}=[(-1)(-3)]_{7}=[3]_{7}} \\
& {[6]_{7}[4]_{7}=[24]_{7}}
\end{aligned}
$$

But that's okay because

$$
[3]_{7}=[24]_{7} .
$$

We think of π / n as "clock arithmetic:

For example, here are the addition and multiplication tables for $\mathbb{Z} / 6$. (Here we write x instead of $[x]_{b}$ to save space.)

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1

x	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

no obvious pattern
obviously, X is more complicated!

Slightly Different Language for Z/nZ

Last time we defined a strange "equivalence relation" on the set of integers: Let $n<\pi$ with $n \neq 0$. Then for all $a, b \in \mathbb{R}$ we say

$$
" a \sim_{n} b " \Longleftrightarrow "
$$

We verified the three properties of equivalence

$$
\begin{aligned}
& \cdot a \sim_{n} a \text { for all } a \in \mathbb{Z} \\
& \cdot a \sim_{n} b \Rightarrow b \sim_{n} a \text { for all } a, b \in \mathbb{Z} \\
& \cdot\left(a \sim_{n} b \wedge b \sim_{n} c\right) \Longrightarrow a \sim_{n} c \quad \forall a, b, c \in \mathbb{R}
\end{aligned}
$$

Thus " \sim_{n} " behaves similarly to the equals sign " $=$ ", but it is not exactly the some: Note that for all $a, b \in \mathbb{Z}$ we have

$$
a=b \Longrightarrow a \sim_{n} b \text {, }
$$

but is not generally true that

$$
a \sim_{n} b \Rightarrow a=b .
$$

Example: Let $a=3, b=7, n=4$.
Then since $4 \mid(3-7)$ we have $3 \sim_{4} 7$ (we say " 3 is equivalent to 7 mod 4 ") even though $3 \neq 7$.

So "~n" is not the equals sign on \mathbb{Z}, but there is a trick we can do to turn " \sim_{n} " into an equals sign on a different set.

Given a nonzers integer $n \in \mathbb{Z}$ we will define the following set of abstract symbols

$$
\mathbb{R} / n:=\left\{[a]_{n}: a \in \mathbb{Z}\right\}
$$

and we declare that

$$
[a]_{n}=[b]_{n}^{\prime \prime} \Longleftrightarrow n \mid(a-b)^{\prime \prime}
$$

The fact that " \sim_{n} " is on equivalence makes this behave like typical equals sign so the notation is OK.

We call $\mathbb{Z} n$ the set of "integers mod n ". Note that this is very similar to the wang we defined \mathbb{Q}, lout \mathbb{Q} was already familiar to $u s$ and the set \mathbb{Z} / n is something new.

We have lots of questions:
(1) Is it possible to "add" \& "multiply" elements of π / n ?
(2) Con elements of \mathbb{Z} / n be put in some "standard form" like elements of ©Q can be put in "lowest terms"?
(3) Is the set $Z 2 / n$ useful for something? [Right now it just seems like an arbitrary definition.]

Let's deal with Question (2) first. It seems. that the set $\mathbb{Z} n$ is infinite, but it really only has n elements.

A Theorem: Given $n \in \mathbb{Z}, n>0$, we have

$$
\mathbb{Z} / n=\left\{[0]_{n},[1]_{n},[2]_{n}, \cdots,[n-1]_{n}\right\}
$$

Proof: We will show that this is really just the Division Theorem in disguise.

Consider any symbol $[a]_{n} \in \mathbb{Z}$. Since $n \neq 0$, the Division Theorem sags that there exist unique of, $r \in \mathbb{Z}$ such that

$$
a=q n+r \quad \& \quad 0 \leqslant r<n .
$$

Note that $a-r=q n \Longrightarrow n \mid(a-r)$ $\Longrightarrow[a]_{n}=[r]_{n}$. Since $0 \leqslant r<n$ This shows that every symbol is equal to one of the "standard symb:1s"

$$
[0]_{n},[1]_{n},[2]_{n}, \cdots,[n-1]_{n}
$$

Furthermore, the uniqueness of remainder implies that none of these n standard symbols are equal to each other.

This answers Question (2), so Let's go back to Question (1):

Is it possible to "add" \& "multiply" elements of the set \mathbb{R} / n ?

Well, there's on obvious way to try to do this. Given two symbols [a] \& [b]n in $2 / n$ we will define

$$
\begin{aligned}
& { }^{[}[a]_{n}+[b]_{n} \prime:=[a+b]_{n} \\
& "[a]_{n} \cdot[b]_{n} \prime:=[a b]_{n}
\end{aligned}
$$

That looks reasonable but we have to be careful. Specifically, we have to check the following property:
"If we add/multiply two symbols and then put the result in stondard form we get the same as if we first put the two symbols in standard form and then add/multiply them.
[You will check this on HW 5.].

Assuming that this is true, Let's look at a couple examples.

Example $(n=2)$: We have

$$
z / 2=\left\{[\Delta]_{2},[1]_{2}\right\}
$$

The addition and multiplication tables are given by

+	$[0]_{2}[1]_{2}$	\cdot	$[0]_{2}[1]$
$[0]_{2}$	$[0]_{2}[1]_{2}$	$[0]_{2}$	$[0]_{2}[0]_{2}$
$[1]_{2}$	$[1]_{2}[0]_{2}$	$[1]_{2}$	$[0]_{2}[1]_{2}$

But what does this mean?
Note that for all $n \in \lambda$ we have

$$
[n]_{2}=\left\{[\Delta]_{2} \quad \text { if } n\right. \text { is even }
$$

So maybe it's more meoningtal to call the two elements

$$
\pi / 2=\{\text { even, odd }\}
$$

Then we have

t	even old	even odd	
even	even odd	even	even even
odd	odd even	odd	even odd

which makes sense. We've been talking about these tables since the be ginning of the course.

Example $(n=6)$:
To save space I'll drop the brackets in the notation and just write

$$
[a]_{6}=" a a^{\prime \prime} .
$$

Hopefully we wont get confused.

Then we have

$$
\pi / 6=\{0,1,2,3,4,5\}
$$

with addition and multiplication tables

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\cdot	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

The Linear Congruence Theorem

Last time we defined a new kind of number system.

A Definition: Fix $0 \neq n \in \mathbb{Z}$ and let

$$
\mathbb{Z} / n:=\left\{[a]_{n}: a \in \mathbb{R}\right\}
$$

be a set of abstract symbols such that

$$
\begin{aligned}
& \cdot {[a]_{n}=[b]_{n} } \\
& \cdot[a]_{n}+[b]_{n}=[a+b]_{n} \\
& \cdot[a-b) \\
& \cdot[a]_{n} \cdot[b]_{n}=[a b]_{n}
\end{aligned}
$$

We checked (or will check on HW5) that the definitions of " $=$ ", "t", and "." make sense. one con also check (but we won't) that the structure

$$
(\mathbb{Z} / n,=,+, \cdot)
$$

satisfies the first 8 axioms of 2 :

$$
(A 1)-\left(A^{4}\right),(M 1)-(M 3),(D)
$$

So π / n is an example of a ring. However, it is unlike the other rings that we know $(e \cdot g .2, \mathbb{U}, \mathbb{R})$.

For example, \mathbb{R} / n is finite. In fact, we showed last time that

$$
Z / n=\left\{[0]_{n},[1]_{n}, \cdots,[n-1]_{n}\right\}
$$

Another strange thing about $2 / n$ is that it may contain "nonzero elements that "act like zero". For example, consider $[2]_{6},[3]_{6} \in \mathbb{Z} / 6$. We have

$$
\begin{aligned}
{[2]_{6} \cdot[3]_{6} } & =[2 \cdot 3]_{6} \\
& =[6]_{6} \\
& =[0]_{6}
\end{aligned}
$$

but $[2]_{6} \neq[0]_{6}$ and $[3]_{6} \neq[6]_{6}$
This means that multiplicative cancellation does not generally work in \mathbb{Z} / n.

For example, we have

$$
[2]_{6} \cdot[5]_{6}=[10]_{6}=[4]_{6}=[2]_{6} \cdot[2]_{6}
$$

But we are not allowed to "cancel the 2" because $[5]_{L} \neq[2]_{6}$.

On the other hand, note That

$$
[3]_{7} \cdot[5]_{7}=[15]_{7}=[1]_{7}
$$

This means that we can always "cancel 3 " or "cancel 5" when working mod 7 .

Proof: For all $[a]_{7},[b]_{7} \in \mathbb{Z} / 7$ we have

$$
\begin{aligned}
& {[5]_{7}[a]_{7}=[5]_{7}[b]_{7}} \\
& \quad \Longrightarrow[3]_{7}[5]_{7}[a]_{7}=[3]_{7}[5]_{7}[b]_{7} \\
& \Longrightarrow[1]_{7}[a]_{7}=[1]_{7}[b]_{7} \\
& \Longrightarrow[a]_{7}=[b]_{7}
\end{aligned}
$$

Here is the general situation.
The Linear Congruence Theorem:

$$
\text { Fix } 0 \neq n \in \mathbb{Z} \text {. }
$$

Then for all $a, b \in \mathbb{Z}$, the equation

$$
[a]_{n} \cdot[x]_{n}=[b]_{n}
$$

has a solution $[x]_{n}$ if and only if $\operatorname{gcd}(a, n) \mid b$. If a solution exists Then it is unique $(\operatorname{mol} n)$.

Proof: Note that

$$
\begin{aligned}
{[a]_{n}[x]_{n}=[b]_{n} } & \Longleftrightarrow[a x]_{n}=[b]_{n} \\
& \Longleftrightarrow n \mid(b-a x) \\
& \Longleftrightarrow n k=b-a x \text { for some } k \in \mathbb{R} \\
& \Longleftrightarrow a x+b k=n \text { for some } k \in \mathbb{Z} .
\end{aligned}
$$

We already Know the Diophantine equation $h<s$ a solution if and only if $\operatorname{gcd}(a, n) \mid b$.

The solution (if it exists) can be computed with the Extended Euclidean Algorithm.

To prove uniqueness, let $\operatorname{gcl}(a, n)=1$ and suppose that we have two solutions:

$$
\begin{aligned}
& {[a]_{n}[x]_{n}=[b]_{n}} \\
& {[a]_{n}[y]_{n}=[b]_{n}}
\end{aligned}
$$

It follows the

$$
\begin{aligned}
& {[a]_{n}[x]_{n}=[a]_{n}[y]_{n}} \\
& \Longrightarrow n \mid a x]_{n}=[a y]_{n} \\
& \Longrightarrow n \mid a x-a y) \\
& \Longrightarrow n \mid a(x-y) \\
& \Longrightarrow n \mid(x-y) \\
& \Longrightarrow[x]_{n}=[y]_{n}
\end{aligned}
$$

Euclid's Lemma

Here's an example:

Solve: $[14]_{26} \cdot[x]_{26}=[12]_{26}$
This means $14 x-12=-26 k$ for some $k \in \mathbb{R}$, or $14 x+26 k=12$.

Consider all triples $x, k, z \in \lambda$ such that $14 x+26 k=z$:

x	k	z
0	1	26
1	0	14
-1	1	12
		$(2)=(1)-(2)$

Done. We conclude that

$$
\begin{aligned}
& 14(-1)+26(1)=12 \\
& {[14]_{26}[-1]_{26}=[12]_{26}}
\end{aligned}
$$

The unique solution $\bmod 26$ is

$$
[x]_{26}=[-1]_{26}=[25]_{26}
$$

And here is a special case of the congruence Theserm:

The equation $[a]_{n}[x]_{n}=[1]_{n}$ has a (unique) solution if and only if $\operatorname{gcd}(a, n)=1$.

The solution is called the multiplicative inverse of a mod n :

$$
[a]_{n}[x]_{n}=[1]_{n} \Longrightarrow[x]_{n}=\left[a^{-1}\right]_{n}
$$

Example: $\operatorname{since} \operatorname{ged}(7,13)=1$ we know that the inverse $\left[7^{-1}\right]_{13}$ exists. Find it.

Consider a $11 x, y, z \in 2$ such that $7 x+13 y=z$:

$$
\begin{array}{rccll}
x & y & z & & \Rightarrow 7(2)+13(-1)=1 \\
0 & 1 & 13 \\
1 & 0 & 7 & & \Rightarrow[7]_{13}[2]_{13}=[1]_{13} \\
-1 & 1 & 6 & & \Rightarrow\left[7^{-1}\right]_{13}=[2]_{13} .
\end{array}
$$

In other words: To "divide by 7 " mol 13 we should "multiply by 2 ".

Example: Solve $7 \cdot z=5 \bmod 13$
Solution:

$$
\begin{aligned}
7 z & =5 \\
2 \cdot 7 z & =2 \cdot 5 \\
1 z & =10 \\
z & =10 \quad \bmod 13
\end{aligned}
$$

In other words:

$$
\begin{aligned}
{[7]_{13}[z]_{13} } & =[5]_{13} \\
& {[z]_{13} }
\end{aligned}=\left[77^{-1}\right]_{13}[5]_{13} ~(5]_{13} ~(10]_{13} .
$$

More generally: If $\operatorname{gcl}(a, n)<1$ then for all $b \in \lambda$ we have

$$
[a]_{n}[x]_{n}=[b]_{n} \Longrightarrow[x]_{n}=\left[a^{-1}\right]_{n}[b]_{n},
$$

where $\left[a^{-1}\right]_{n}$ can be found using The Euclidean Algorithm.

What is Z / nZ Good For?

Q: Why bother?
Modular arithmetic was invented to help solve problems in number theory.

Example: Prove that the equation

$$
x^{2}+y^{2}=55
$$

has no integer solution $x, y \in \mathbb{Z}$.
Proof: Assume for contradiction that there exist $x, y \in \mathbb{Z}$ such that

$$
x^{2}+y^{2}=55
$$

Now "reduce the equation $\bmod 4$ " to get

$$
\begin{gathered}
{\left[x^{2}+y^{2}\right]_{4}=[55]_{4}} \\
{\left[x^{2}\right]_{4}+\left[y^{2}\right]_{4}=[13 \cdot 4+3]_{4}} \\
{[x \cdot x]_{4}+[y \cdot y]_{4}=[13]_{4} \cdot[4]_{4}+[3]_{4}} \\
{[x]_{4}[x]_{4}+[y]_{4}[y]_{4}=[1]_{4}[0]_{4}+[3]_{4}} \\
\left([x]_{4}\right)^{2}+\left([y]_{4}\right)^{2}=[3]_{4}
\end{gathered}
$$

But since $\mathbb{Z} / 4$ orly has 4 elements, we can check by hond that this last equation is impossible. Indeed, note that

$$
\begin{aligned}
& \left([0]_{4}\right)^{2}=\left[0^{2}\right]_{4}=[0]_{4} \\
& \left([1]_{4}\right)^{2}=\left[1^{2}\right]_{4}=[1]_{4} \\
& \left([2]_{4}\right)^{2}=\left[2^{2}\right]_{4}=[0]_{4} \\
& \left([3]_{4}\right)^{2}=\left[3^{2}\right]_{4}=[1]_{4}
\end{aligned}
$$

So for all $[x]_{4},[y]_{4} \in \mathbb{Z} / 4$ we have

$$
\left([x]_{4}\right)^{2},\left([y]_{4}\right)^{2} \in\left\{[0]_{4},[1]_{4}\right\}
$$

and it is impossible to add two of these numbers to get [3] y.
"Reducing mod n " gives us lots of tricks for solving Diophantine equations.

But that's an application to pure mathematics. For thousands of years it was believed that modular arithmetic had no serious application in the "real world".

That all changed in the 1970's when it was discovered that modular arithmetic is the perfect languge for "public key cryptography".

Today the security of most internet traffic is protected by the following little theorem of modular arithmetic.

* Fermat's little Theorem:

Let $p \in \mathbb{Z}$ be prime. Then for all integers $n \in \mathbb{Z}$ we have

$$
\left([n]_{p}\right)^{p}=[n]_{p}
$$

Pierre de Fermat stated this result in 1640 but he did not share his proof. The first written proof is by Leonhard Euler in 1736. Discussing Euler's pros will lead us into same interesting mathematics.

For now, Let's just test the theorem. Let $p=5$ then (working mod 5) we have

$$
\begin{aligned}
& 0^{5}=0 \\
& 1^{5}=1 \\
& 2^{5}=32=2 \\
& \begin{aligned}
3^{5} & =3^{2} \cdot 3^{2} \cdot 3^{1} \\
& =9 \cdot 4 \cdot 3 \\
& =4 \cdot 4 \cdot 3 \\
& =4 \cdot 12 \\
& =4 \cdot 2=8=3
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
4^{5} & =4^{2} \cdot 4^{2} \cdot 4 \\
& =16 \cdot 16 \cdot 4 \\
& =1 \cdot 1 \cdot 4=4
\end{aligned}
$$

It works!
(at least when $p=5$).

How might we prove FlT for a general prime p ?

