Problem 1. In this problem you will give another proof that $\sqrt{d} \notin \mathbb{Z} \Rightarrow \sqrt{d} \notin \mathbb{Q}$ for all $d \in \mathbb{Z}$. The key is to use unique prime factorization. For all $n, p \in \mathbb{Z}$ with p prime we will write $p^{k} \| n$ to mean that $p^{k} \mid n$ and $p^{k+1} \nmid n$.
(a) If $d \in \mathbb{Z}$ and $\sqrt{d} \notin \mathbb{Z}$, prove that we have $p^{k} \| d$ for some prime p and odd integer k.
(b) Assume that we have $\sqrt{d}=a / b$, and hence $a^{2}=d b^{2}$, for some $a, b \in \mathbb{Z}$. Derive a contradiction by considering the multiplicity of p on both sides.

Problem 2. In this problem you will use induction to generalize Euclid's lemma. Let $p \in \mathbb{Z}$ be prime and for all integers $n \geq 1$ consider the following statement:
$P(n)=$ "for all integers $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ we have $p \mid\left(a_{1} a_{2} \cdots a_{n}\right) \Rightarrow\left(p \mid a_{i}\right.$ for some $\left.i\right) . "$
(a) Explain why $P(2)$ is a true statement.
(b) Assume for induction that $P(n)$ is a true statement. In this case, prove that $P(n+1)$ is also a true statement.

Problem 3. In this problem you will give Euclid's proof that there exist infinitely many prime numbers. Assume for contradiction that there exist only finitely many prime numbers, and call them

$$
1<p_{1}<p_{2}<p_{3}<\cdots<p_{k} .
$$

Now consider the number $N:=p_{1} p_{2} \cdots p_{k}+1$. You know from HW4 Problem 4 that there exists a prime number $p \in \mathbb{Z}$ such that $p \mid N$. On the other hand, prove that $p \neq p_{i}$ for all i. This is a contradiction.

Problem 4. Let \sim be an equivalence relation on a set S and for each element $x \in S$ let $[x]:=\{y \in S: x \sim y\} \subseteq S$ be its equivalence class. For all $x, y \in S$ prove that the following three statements are equivalent:
(1) $x \sim y$,
(2) $[x]=[y]$,
(3) $[x] \cap[y] \neq \emptyset$.
[Hint: You need to prove some cycle. I recommend $(1) \Rightarrow(2) \Rightarrow(3) \Rightarrow(1)$.]

Problem 5. Fix a nonzero integer $n \in \mathbb{Z}$ and recall that $[a]_{n}=[b]_{n}$ means $n \mid(a-b)$. Now assume for some $a, b, a^{\prime}, b^{\prime} \in \mathbb{Z}$ that $[a]_{n}=\left[a^{\prime}\right]_{n}$ and $[b]_{n}=\left[b^{\prime}\right]_{n}$. In this case prove that

$$
[a+b]_{n}=\left[a^{\prime}+b^{\prime}\right]_{n} \quad \text { and } \quad[a b]_{n}=\left[a^{\prime} b^{\prime}\right]_{n}
$$

In other words: The addition and multiplication of integers $\bmod n$ is "well-defined."

