Math 230 Fall 2018
Homework 4 Drew Armstrong

Problem 1. Prove the following properties for all integers a, b, c € Z.

(a) If a|b and b|c then alc.

(b) If alb and alc then a|(bx + cy) for all integers x,y € Z.

(c) If alb and b # 0 then |a| < |b|. [Hint: Absolute value is multiplicative.]

(d) If alb and bla then a = +b. [Hint: Use the fact that uv = 0 implies . = 0 or v = 0.]

(a) Let a|b and blc, so that ak = b and b¢ = ¢ for some k,¢ € Z. Then we have
c=bl = (ak)l = a(k?),

which implies alc.

(b) Let alb and a|c, so that ak = b and af = ¢ for some k, ¢ € Z. Then for all z,y € Z we have
br + cy = (ak)z + (al)y = a(kx + ly),
which implies that a|(bz + cy).
(c) Let alb, so that ak = b for some k € Z, and assume that b # 0. Then we must also have
a # 0 and k # 0, which implies that
[kl > 1
lal[k| = |a|
|ak| > |al
6] = |al.

(d) Let a|b and b|a, so that ak = b and b¢ = a for some k,¢ € Z. If a = 0 then this implies
that b = 0k = 0, and there is nothing to prove. Otherwise, if a # 0 then we have

a=>bl
a = (ak)l
a—akl=0
a(l — k) =0,
which implies that
1—kl=0
kl = 1.

From part (c) we have |k|,|¢| < 1. So there are exactly two solutions: (1) k = ¢ = 1, which
implies that a = b, or (2) k = ¢ = —1, which implies that a = —b.
Problem 2. Euclid’s Lemma. For all integers a, b, c € Z prove that

a|(bc) and ged(a,b) = 1 imply that alc.

[Hint: If ged(a,b) = 1 then the Extended Euclidean Algorithm tells us that there exist (non-
unique) integers z,y € Z satisfying azx + by = 1.]



Proof. Suppose that a|(bc), say ak = be, and ged(a, b) = 1. Then from the Extended Euclidean
Algorithm there exist integers x,y € Z such that ax + by = 1 and it follows that

1=ax+ by

¢ = claz + by)

¢ = acx + (be)y

¢ = acx + (ak)y
¢ = a(cr + ky),

hence alc. O

Problem 3. Let a,b,c € Z, with a and b not both zero, and consider the sets

V ={(z,y) € Z*: ax + by = ¢},
Vo = {(z,y) € Z* : ax + by = 0}.

(a) If (2/,y") € V is one particular solution, prove that V is equal to the set
(@) + Vo ={(@ + 2,9 +y): (z,y) € Vo}.

(b) Let d = ged(a,b) with a = da’ and b = db’ and assume that ¢ = dc for some o', ¥/, ¢ € Z.
Prove that V is equal to the set

V= {(z,y) € Z®:dz+Vy ="}

(c) Now let (a,b,c) = (3094,2513,21). Use the Extended Euclidean Algorithm to find one
particular element (2/,y") € V. [Hint: From part (b) it is enough to find one particular
element of (z/,y’) € V']

(d) Continuing from (c), use Problem 2 to find all elements of the set Vj. [Hint: From
part (b) we know that Vo = Vj = {(z,y) € Z? : 'z + b'y = 0}.]

(a) Let (2/,y') be any element of the set V, so that aa’ + by’ = c. We are asked to show that
the sets V and (2/,y’) + Vi are equal. There are two things to show.

e To see that [(z/,y') + Vo] C V, consider any element (z,y) of the set (z/,y’) + Vp. By
definition this means that (z,y) = (2’ 4+ zo,y’ + yo) for some xp,y0 € Z such that
axg + byg = 0. It follows that

ar + by = a(z’ + x0) + by’ + yo)
= (ax + by) + (azo + byo)
=c+0

= C,
and hence (z,y) is in V.

e To see that V' C [(2'y’) + V], consider any element (z,y) € V, so that ax + by = ¢. To
prove that (z,y) is also in (2/,3) + Vi we need to show that (z,y) = (z' + zo, 4" + 30)
for some xg, yo € Z such that axy + byy = 0. And there is only one possible choice: let

ro:=z—2 and yo:=y-—v.



Then we have

axo +byo = a(zx — ') + b(y — )
= (ax + by) — (ax’ + by')
=c—c
=0,
as desired.

O

(b) Let d = ged(a, b) and assume that a = da’,b = db’, ¢ = dc’ for some o', V', € Z. We are
asked to show that the sets V and V' are equal. There are two things to show.

e To see that V' C V| consider any element (z,y) € V’ so that a’x + b'y = ¢’. Then
dr+by=~<
d(a'z +b'y) = dc
(da")x + (db')y = (dc)
ax + by = ¢,

and hence (z,y) € V.

e To see that V' C V’| consider any (z,y) € V so that ax + by = ¢. Then since d # 0 we
have
axr +by=c
(da")x + (bd")y = (dc’)
d(d'z +b'y) = dc
dr+by=~¢,
and hence (z,y) € V.
(c) Let (a,b) = (3094,2513) and consider the set of triples (x,y, z) € Z* such that az + by =

z. We start with the easy triples (1,0,3094) and (0,1,2513) and then apply the Extended
Euclidean Algorithm to obtain the following table:

x Yy z row operation
1 0| 3094 | (row 1)
0 1]2513 | (row 2)
1 —1| 581 | (row 3) = (row 1) —1- (row 2)
—4 5| 189 | (row 4) = (row 2) — 4 (row 3)
13| —16 14 | (row 5) = (row 3) — 3 - (row 4)
—173 | 213 7| (row 6) = (row 4) — 13- (row 5)
359 | —442 0| (row7) = (row 5) —2- (row 6)

Since the last nonzero remainder is 7 we conclude that ged(3094,2513) = 7. Since 7|21 we
conclude that the equation 3094z + 2513y = 21 does have a solution, and we can read off one



particular solution from row 6:
3094(—173) 4+ 2513(213) =7
3094(—173-3) +2513(213-3)=7-3
3094(—519) 4 2513(639) = 21.

(d) If d = ged(a,b) with a = da’ and b = db’ then one can show that ged(a’, ) = 1. [Proof
omitted.] Now consider any (z,y) € V' so that 'z + V'y = 0, and hence a’x = —b'y. Since
ged(a’,b') = 1, Problem 2 implies that = b’k and y = a/¢ for some k,¢ € Z. But then since
a'b # 0 we have

adr=—-by
a'(b'l) = = (d'k)
(¥t = ¥ (k)

{=—k.

We conclude that every element of Vj has the form

(z0,y0) = (V'k,—d’'k) for some k € Z.

[Example: In the case (a,b) = (3094, 2513), we have a’ = 3094/7 = 442 and b’ = 2513/7 = 359.
Thus the complete solution of the equation 3094z + 2513y = 0 is

(zo,v0) = (b'k, —d'k) = (359k, —442k)  for all k € Z.

It is no coincidence that these are the same numbers appearing in row 7 of the table in part
(c). Then applying the results of (a),(b),(c) we conclude that the complete solution of the
equation 3094x 4 2513y = 21 is

(z,y) = (&' + 20,y + o) = (=519 4 359k, 639 — 442k)  for all k € Z.]

Problem 4. Consider an integer n > 2. We say that d is a proper divisor of n if d|n and
1 < d < n. We say that p > 2 is prime if it has no proper divisor. Prove that

every integer n > 2 has a prime divisor p|n.

[Hint: Let S be the set of integers n > 2 that have no prime divisor. If this set is not empty
then it must have a smallest element m € S. You will need 1(c).]

[Remark: The hint is wrong. You don’t need 1(c). But you do need 1(a).]

Proof. Consider the set
S = {integers n > 2 : n has no prime factor},

and assume for contradiction that this set is not empty. Since S is bounded below (by 2)
it follows from the Well-Ordering Axiom that there exists a smallest element m € S. This
number satisfies the following properties:

em>2,

e m has no prime factor,

e if 1 < d < m then d does have a prime factor.



But I claim that this is nonsense. Indeed, from the second property we know that m is not
prime (because m divides itself). But then by definition m must have a proper divisor d|m
satisfying 1 < d < m. Now the third property implies that there exists a prime p dividing d.
And from 1(a) the facts p|d and d|m imply p|m, which contradicts the second property. [



