Problem 1. Prove the following properties for all integers $a, b, c \in \mathbb{Z}$.
(a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$ then $a \mid(b x+c y)$ for all integers $x, y \in \mathbb{Z}$.
(c) If $a \mid b$ and $b \neq 0$ then $|a| \leq|b|$. [Hint: Absolute value is multiplicative.]
(d) If $a \mid b$ and $b \mid a$ then $a= \pm b$. [Hint: Use the fact that $u v=0$ implies $u=0$ or $v=0$.]
(a) Let $a \mid b$ and $b \mid c$, so that $a k=b$ and $b \ell=c$ for some $k, \ell \in \mathbb{Z}$. Then we have

$$
c=b \ell=(a k) \ell=a(k \ell),
$$

which implies $a \mid c$.
(b) Let $a \mid b$ and $a \mid c$, so that $a k=b$ and $a \ell=c$ for some $k, \ell \in \mathbb{Z}$. Then for all $x, y \in \mathbb{Z}$ we have

$$
b x+c y=(a k) x+(a \ell) y=a(k x+\ell y),
$$

which implies that $a \mid(b x+c y)$.
(c) Let $a \mid b$, so that $a k=b$ for some $k \in \mathbb{Z}$, and assume that $b \neq 0$. Then we must also have $a \neq 0$ and $k \neq 0$, which implies that

$$
\begin{aligned}
|k| & \geq 1 \\
|a||k| & \geq|a| \\
|a k| & \geq|a| \\
|b| & \geq|a| .
\end{aligned}
$$

(d) Let $a \mid b$ and $b \mid a$, so that $a k=b$ and $b \ell=a$ for some $k, \ell \in \mathbb{Z}$. If $a=0$ then this implies that $b=0 k=0$, and there is nothing to prove. Otherwise, if $a \neq 0$ then we have

$$
\begin{aligned}
a & =b \ell \\
a & =(a k) \ell \\
a-a k \ell & =0 \\
a(1-k \ell) & =0,
\end{aligned}
$$

which implies that

$$
\begin{aligned}
1-k \ell & =0 \\
k \ell & =1 .
\end{aligned}
$$

From part (c) we have $|k|,|\ell| \leq 1$. So there are exactly two solutions: (1) $k=\ell=1$, which implies that $a=b$, or (2) $k=\ell=-1$, which implies that $a=-b$.

Problem 2. Euclid's Lemma. For all integers $a, b, c \in \mathbb{Z}$ prove that

$$
a \mid(b c) \text { and } \operatorname{gcd}(a, b)=1 \text { imply that } a \mid c .
$$

[Hint: If $\operatorname{gcd}(a, b)=1$ then the Extended Euclidean Algorithm tells us that there exist (nonunique) integers $x, y \in \mathbb{Z}$ satisfying $a x+b y=1$.]

Proof. Suppose that $a \mid(b c)$, say $a k=b c$, and $\operatorname{gcd}(a, b)=1$. Then from the Extended Euclidean Algorithm there exist integers $x, y \in \mathbb{Z}$ such that $a x+b y=1$ and it follows that

$$
\begin{aligned}
& 1=a x+b y \\
& c=c(a x+b y) \\
& c=a c x+(b c) y \\
& c=a c x+(a k) y \\
& c=a(c x+k y)
\end{aligned}
$$

hence $a \mid c$.

Problem 3. Let $a, b, c \in \mathbb{Z}$, with a and b not both zero, and consider the sets

$$
\begin{aligned}
V & =\left\{(x, y) \in \mathbb{Z}^{2}: a x+b y=c\right\} \\
V_{0} & =\left\{(x, y) \in \mathbb{Z}^{2}: a x+b y=0\right\}
\end{aligned}
$$

(a) If $\left(x^{\prime}, y^{\prime}\right) \in V$ is one particular solution, prove that V is equal to the set

$$
\left(x^{\prime}, y^{\prime}\right)+V_{0}:=\left\{\left(x^{\prime}+x, y^{\prime}+y\right):(x, y) \in V_{0}\right\}
$$

(b) Let $d=\operatorname{gcd}(a, b)$ with $a=d a^{\prime}$ and $b=d b^{\prime}$ and assume that $c=d c^{\prime}$ for some $a^{\prime}, b^{\prime}, c^{\prime} \in \mathbb{Z}$. Prove that V is equal to the set

$$
V^{\prime}:=\left\{(x, y) \in \mathbb{Z}^{2}: a^{\prime} x+b^{\prime} y=c^{\prime}\right\}
$$

(c) Now let $(a, b, c)=(3094,2513,21)$. Use the Extended Euclidean Algorithm to find one particular element $\left(x^{\prime}, y^{\prime}\right) \in V$. [Hint: From part (b) it is enough to find one particular element of $\left(x^{\prime}, y^{\prime}\right) \in V^{\prime}$.]
(d) Continuing from (c), use Problem 2 to find all elements of the set V_{0}. [Hint: From part (b) we know that $V_{0}=V_{0}^{\prime}=\left\{(x, y) \in \mathbb{Z}^{2}: a^{\prime} x+b^{\prime} y=0\right\}$.]
(a) Let $\left(x^{\prime}, y^{\prime}\right)$ be any element of the set V, so that $a x^{\prime}+b y^{\prime}=c$. We are asked to show that the sets V and $\left(x^{\prime}, y^{\prime}\right)+V_{0}$ are equal. There are two things to show.

- To see that $\left[\left(x^{\prime}, y^{\prime}\right)+V_{0}\right] \subseteq V$, consider any element (x, y) of the set $\left(x^{\prime}, y^{\prime}\right)+V_{0}$. By definition this means that $(x, y)=\left(x^{\prime}+x_{0}, y^{\prime}+y_{0}\right)$ for some $x_{0}, y_{0} \in \mathbb{Z}$ such that $a x_{0}+b y_{0}=0$. It follows that

$$
\begin{aligned}
a x+b y & =a\left(x^{\prime}+x_{0}\right)+b\left(y^{\prime}+y_{0}\right) \\
& =(a x+b y)+\left(a x_{0}+b y_{0}\right) \\
& =c+0 \\
& =c
\end{aligned}
$$

and hence (x, y) is in V.

- To see that $V \subseteq\left[\left(x^{\prime} y^{\prime}\right)+V_{0}\right]$, consider any element $(x, y) \in V$, so that $a x+b y=c$. To prove that (x, y) is also in $\left(x^{\prime}, y^{\prime}\right)+V_{0}$ we need to show that $(x, y)=\left(x^{\prime}+x_{0}, y^{\prime}+y_{0}\right)$ for some $x_{0}, y_{0} \in \mathbb{Z}$ such that $a x_{0}+b y_{0}=0$. And there is only one possible choice: let

$$
x_{0}:=x-x^{\prime} \quad \text { and } \quad y_{0}:=y-y^{\prime}
$$

Then we have

$$
\begin{aligned}
a x_{0}+b y_{0} & =a\left(x-x^{\prime}\right)+b\left(y-y^{\prime}\right) \\
& =(a x+b y)-\left(a x^{\prime}+b y^{\prime}\right) \\
& =c-c \\
& =0,
\end{aligned}
$$

as desired.
(b) Let $d=\operatorname{gcd}(a, b)$ and assume that $a=d a^{\prime}, b=d b^{\prime}, c=d c^{\prime}$ for some $a^{\prime}, b^{\prime}, c^{\prime} \in \mathbb{Z}$. We are asked to show that the sets V and V^{\prime} are equal. There are two things to show.

- To see that $V^{\prime} \subseteq V$, consider any element $(x, y) \in V^{\prime}$ so that $a^{\prime} x+b^{\prime} y=c^{\prime}$. Then

$$
\begin{aligned}
a^{\prime} x+b^{\prime} y & =c^{\prime} \\
d\left(a^{\prime} x+b^{\prime} y\right) & =d c^{\prime} \\
\left(d a^{\prime}\right) x+\left(d b^{\prime}\right) y & =\left(d c^{\prime}\right) \\
a x+b y & =c,
\end{aligned}
$$

and hence $(x, y) \in V$.

- To see that $V \subseteq V^{\prime}$, consider any $(x, y) \in V$ so that $a x+b y=c$. Then since $d \neq 0$ we have

$$
\begin{aligned}
a x+b y & =c \\
\left(d a^{\prime}\right) x+\left(b d^{\prime}\right) y & =\left(d c^{\prime}\right) \\
\not d\left(a^{\prime} x+b^{\prime} y\right) & =d c^{\prime} \\
a^{\prime} x+b^{\prime} y & =c^{\prime},
\end{aligned}
$$

and hence $(x, y) \in V^{\prime}$.
(c) Let $(a, b)=(3094,2513)$ and consider the set of triples $(x, y, z) \in \mathbb{Z}^{3}$ such that $a x+b y=$ z. We start with the easy triples $(1,0,3094)$ and $(0,1,2513)$ and then apply the Extended Euclidean Algorithm to obtain the following table:

x	y	z	row operation	
1	0	3094	$($ row 1)	
0	1	2513	(row 2)	
1	-1	581	(row 3)	$=($ row 1) $-1 \cdot($ row 2)
-4	5	189	(row 4)	$=($ row 2) $-4 \cdot($ row 3)
13	-16	14	(row 5)	$=($ row 3) $-3 \cdot($ row 4)
-173	213	7	(row 6)	$=($ row 4) $-13 \cdot($ row 5)
359	-442	0	(row 7)	$=($ row 5) $-2 \cdot($ row 6)

Since the last nonzero remainder is 7 we conclude that $\operatorname{gcd}(3094,2513)=7$. Since $7 \mid 21$ we conclude that the equation $3094 x+2513 y=21$ does have a solution, and we can read off one
particular solution from row 6 :

$$
\begin{aligned}
3094(-173)+2513(213) & =7 \\
3094(-173 \cdot 3)+2513(213 \cdot 3) & =7 \cdot 3 \\
3094(-519)+2513(639) & =21
\end{aligned}
$$

(d) If $d=\operatorname{gcd}(a, b)$ with $a=d a^{\prime}$ and $b=d b^{\prime}$ then one can show that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$. [Proof omitted.] Now consider any $(x, y) \in V^{\prime}$ so that $a^{\prime} x+b^{\prime} y=0$, and hence $a^{\prime} x=-b^{\prime} y$. Since $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$, Problem 2 implies that $x=b^{\prime} k$ and $y=a^{\prime} \ell$ for some $k, \ell \in \mathbb{Z}$. But then since $a^{\prime} b^{\prime} \neq 0$ we have

$$
\begin{aligned}
a^{\prime} x & =-b^{\prime} y \\
a^{\prime}\left(b^{\prime} \ell\right) & =-b^{\prime}\left(a^{\prime} k\right) \\
\left(a^{\prime} b^{\prime}\right) \ell & =a^{\prime} \delta^{\prime}(-k) \\
\ell & =-k .
\end{aligned}
$$

We conclude that every element of V_{0} has the form

$$
\left(x_{0}, y_{0}\right)=\left(b^{\prime} k,-a^{\prime} k\right) \quad \text { for some } k \in \mathbb{Z}
$$

[Example: In the case $(a, b)=(3094,2513)$, we have $a^{\prime}=3094 / 7=442$ and $b^{\prime}=2513 / 7=359$. Thus the complete solution of the equation $3094 x+2513 y=0$ is

$$
\left(x_{0}, y_{0}\right)=\left(b^{\prime} k,-a^{\prime} k\right)=(359 k,-442 k) \quad \text { for all } k \in \mathbb{Z}
$$

It is no coincidence that these are the same numbers appearing in row 7 of the table in part (c). Then applying the results of $(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$ we conclude that the complete solution of the equation $3094 x+2513 y=21$ is

$$
\left.(x, y)=\left(x^{\prime}+x_{0}, y^{\prime}+y_{0}\right)=(-519+359 k, 639-442 k) \quad \text { for all } k \in \mathbb{Z} .\right]
$$

Problem 4. Consider an integer $n \geq 2$. We say that d is a proper divisor of n if $d \mid n$ and $1<d<n$. We say that $p \geq 2$ is prime if it has no proper divisor. Prove that

$$
\text { every integer } n \geq 2 \text { has a prime divisor } p \mid n
$$

[Hint: Let S be the set of integers $n \geq 2$ that have no prime divisor. If this set is not empty then it must have a smallest element $m \in S$. You will need 1(c).]
[Remark: The hint is wrong. You don't need 1(c). But you do need 1(a).]
Proof. Consider the set

$$
S=\{\text { integers } n \geq 2: n \text { has no prime factor }\}
$$

and assume for contradiction that this set is not empty. Since S is bounded below (by 2) it follows from the Well-Ordering Axiom that there exists a smallest element $m \in S$. This number satisfies the following properties:

- $m \geq 2$,
- m has no prime factor,
- if $1<d<m$ then d does have a prime factor.

But I claim that this is nonsense. Indeed, from the second property we know that m is not prime (because m divides itself). But then by definition m must have a proper divisor $d \mid m$ satisfying $1<d<m$. Now the third property implies that there exists a prime p dividing d. And from 1(a) the facts $p \mid d$ and $d \mid m$ imply $p \mid m$, which contradicts the second property.

