
Math 230 Fall 2018
Homework 4 Drew Armstrong

Problem 1. Prove the following properties for all integers a, b, c ∈ Z.

(a) If a|b and b|c then a|c.
(b) If a|b and a|c then a|(bx + cy) for all integers x, y ∈ Z.
(c) If a|b and b 6= 0 then |a| ≤ |b|. [Hint: Absolute value is multiplicative.]
(d) If a|b and b|a then a = ±b. [Hint: Use the fact that uv = 0 implies u = 0 or v = 0.]

(a) Let a|b and b|c, so that ak = b and b` = c for some k, ` ∈ Z. Then we have

c = b` = (ak)` = a(k`),

which implies a|c.

(b) Let a|b and a|c, so that ak = b and a` = c for some k, ` ∈ Z. Then for all x, y ∈ Z we have

bx + cy = (ak)x + (a`)y = a(kx + `y),

which implies that a|(bx + cy).

(c) Let a|b, so that ak = b for some k ∈ Z, and assume that b 6= 0. Then we must also have
a 6= 0 and k 6= 0, which implies that

|k| ≥ 1

|a||k| ≥ |a|
|ak| ≥ |a|
|b| ≥ |a|.

(d) Let a|b and b|a, so that ak = b and b` = a for some k, ` ∈ Z. If a = 0 then this implies
that b = 0k = 0, and there is nothing to prove. Otherwise, if a 6= 0 then we have

a = b`

a = (ak)`

a− ak` = 0

a(1− k`) = 0,

which implies that

1− k` = 0

k` = 1.

From part (c) we have |k|, |`| ≤ 1. So there are exactly two solutions: (1) k = ` = 1, which
implies that a = b, or (2) k = ` = −1, which implies that a = −b.

Problem 2. Euclid’s Lemma. For all integers a, b, c ∈ Z prove that

a|(bc) and gcd(a, b) = 1 imply that a|c.
[Hint: If gcd(a, b) = 1 then the Extended Euclidean Algorithm tells us that there exist (non-
unique) integers x, y ∈ Z satisfying ax + by = 1.]



Proof. Suppose that a|(bc), say ak = bc, and gcd(a, b) = 1. Then from the Extended Euclidean
Algorithm there exist integers x, y ∈ Z such that ax + by = 1 and it follows that

1 = ax + by

c = c(ax + by)

c = acx + (bc)y

c = acx + (ak)y

c = a(cx + ky),

hence a|c. �

Problem 3. Let a, b, c ∈ Z, with a and b not both zero, and consider the sets

V = {(x, y) ∈ Z2 : ax + by = c},
V0 = {(x, y) ∈ Z2 : ax + by = 0}.

(a) If (x′, y′) ∈ V is one particular solution, prove that V is equal to the set

(x′, y′) + V0 := {(x′ + x, y′ + y) : (x, y) ∈ V0}.

(b) Let d = gcd(a, b) with a = da′ and b = db′ and assume that c = dc′ for some a′, b′, c′ ∈ Z.
Prove that V is equal to the set

V ′ := {(x, y) ∈ Z2 : a′x + b′y = c′}.

(c) Now let (a, b, c) = (3094, 2513, 21). Use the Extended Euclidean Algorithm to find one
particular element (x′, y′) ∈ V . [Hint: From part (b) it is enough to find one particular
element of (x′, y′) ∈ V ′.]

(d) Continuing from (c), use Problem 2 to find all elements of the set V0. [Hint: From
part (b) we know that V0 = V ′

0 = {(x, y) ∈ Z2 : a′x + b′y = 0}.]

(a) Let (x′, y′) be any element of the set V , so that ax′ + by′ = c. We are asked to show that
the sets V and (x′, y′) + V0 are equal. There are two things to show.

• To see that [(x′, y′) + V0] ⊆ V , consider any element (x, y) of the set (x′, y′) + V0. By
definition this means that (x, y) = (x′ + x0, y

′ + y0) for some x0, y0 ∈ Z such that
ax0 + by0 = 0. It follows that

ax + by = a(x′ + x0) + b(y′ + y0)

= (ax + by) + (ax0 + by0)

= c + 0

= c,

and hence (x, y) is in V .

• To see that V ⊆ [(x′y′) + V0], consider any element (x, y) ∈ V , so that ax+ by = c. To
prove that (x, y) is also in (x′, y′) + V0 we need to show that (x, y) = (x′ + x0, y

′ + y0)
for some x0, y0 ∈ Z such that ax0 + by0 = 0. And there is only one possible choice: let

x0 := x− x′ and y0 := y − y′.



Then we have

ax0 + by0 = a(x− x′) + b(y − y′)

= (ax + by)− (ax′ + by′)

= c− c

= 0,

as desired.

�

(b) Let d = gcd(a, b) and assume that a = da′, b = db′, c = dc′ for some a′, b′, c′ ∈ Z. We are
asked to show that the sets V and V ′ are equal. There are two things to show.

• To see that V ′ ⊆ V , consider any element (x, y) ∈ V ′ so that a′x + b′y = c′. Then

a′x + b′y = c′

d(a′x + b′y) = dc′

(da′)x + (db′)y = (dc′)

ax + by = c,

and hence (x, y) ∈ V .

• To see that V ⊆ V ′, consider any (x, y) ∈ V so that ax + by = c. Then since d 6= 0 we
have

ax + by = c

(da′)x + (bd′)y = (dc′)

�d(a′x + b′y) = �dc
′

a′x + b′y = c′,

and hence (x, y) ∈ V ′.

(c) Let (a, b) = (3094, 2513) and consider the set of triples (x, y, z) ∈ Z3 such that ax + by =
z. We start with the easy triples (1, 0, 3094) and (0, 1, 2513) and then apply the Extended
Euclidean Algorithm to obtain the following table:

x y z row operation
1 0 3094 (row 1)
0 1 2513 (row 2)
1 −1 581 (row 3) = (row 1)− 1 · (row 2)
−4 5 189 (row 4) = (row 2)− 4 · (row 3)
13 −16 14 (row 5) = (row 3)− 3 · (row 4)

−173 213 7 (row 6) = (row 4)− 13 · (row 5)
359 −442 0 (row 7) = (row 5)− 2 · (row 6)

Since the last nonzero remainder is 7 we conclude that gcd(3094, 2513) = 7. Since 7|21 we
conclude that the equation 3094x + 2513y = 21 does have a solution, and we can read off one



particular solution from row 6:

3094(−173) + 2513(213) = 7

3094(−173 · 3) + 2513(213 · 3) = 7 · 3
3094(−519) + 2513(639) = 21.

(d) If d = gcd(a, b) with a = da′ and b = db′ then one can show that gcd(a′, b′) = 1. [Proof
omitted.] Now consider any (x, y) ∈ V ′ so that a′x + b′y = 0, and hence a′x = −b′y. Since
gcd(a′, b′) = 1, Problem 2 implies that x = b′k and y = a′` for some k, ` ∈ Z. But then since
a′b′ 6= 0 we have

a′x = −b′y
a′(b′`) = −b′(a′k)

���(a′b′)` = ��a′b′(−k)

` = −k.
We conclude that every element of V0 has the form

(x0, y0) = (b′k,−a′k) for some k ∈ Z.

[Example: In the case (a, b) = (3094, 2513), we have a′ = 3094/7 = 442 and b′ = 2513/7 = 359.
Thus the complete solution of the equation 3094x + 2513y = 0 is

(x0, y0) = (b′k,−a′k) = (359k,−442k) for all k ∈ Z.

It is no coincidence that these are the same numbers appearing in row 7 of the table in part
(c). Then applying the results of (a),(b),(c) we conclude that the complete solution of the
equation 3094x + 2513y = 21 is

(x, y) = (x′ + x0, y
′ + y0) = (−519 + 359k, 639− 442k) for all k ∈ Z.]

Problem 4. Consider an integer n ≥ 2. We say that d is a proper divisor of n if d|n and
1 < d < n. We say that p ≥ 2 is prime if it has no proper divisor. Prove that

every integer n ≥ 2 has a prime divisor p|n.

[Hint: Let S be the set of integers n ≥ 2 that have no prime divisor. If this set is not empty
then it must have a smallest element m ∈ S. You will need 1(c).]

[Remark: The hint is wrong. You don’t need 1(c). But you do need 1(a).]

Proof. Consider the set

S = {integers n ≥ 2 : n has no prime factor},
and assume for contradiction that this set is not empty. Since S is bounded below (by 2)
it follows from the Well-Ordering Axiom that there exists a smallest element m ∈ S. This
number satisfies the following properties:

• m ≥ 2,
• m has no prime factor,
• if 1 < d < m then d does have a prime factor.



But I claim that this is nonsense. Indeed, from the second property we know that m is not
prime (because m divides itself). But then by definition m must have a proper divisor d|m
satisfying 1 < d < m. Now the third property implies that there exists a prime p dividing d.
And from 1(a) the facts p|d and d|m imply p|m, which contradicts the second property. �


