Problem 1. Prove the following properties for all integers $a, b, c \in \mathbb{Z}$.
(a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$ then $a \mid(b x+c y)$ for all integers $x, y \in \mathbb{Z}$.
(c) If $a \mid b$ and $b \neq 0$ then $|a| \leq|b|$. [Hint: Absolute value is multiplicative.]
(d) If $a \mid b$ and $b \mid a$ then $a= \pm b$. [Hint: Use the fact that $u v=0$ implies $u=0$ or $v=0$.]

Problem 2. Euclid's Lemma. For all integers $a, b, c \in \mathbb{Z}$ prove that

$$
a \mid(b c) \text { and } \operatorname{gcd}(a, b)=1 \text { imply that } a \mid c .
$$

[Hint: If $\operatorname{gcd}(a, b)=1$ then the Extended Euclidean Algorithm tells us that there exist (nonunique) integers $x, y \in \mathbb{Z}$ satisfying $a x+b y=1$.]

Problem 3. Let $a, b, c \in \mathbb{Z}$, with a and b not both zero, and consider the sets

$$
\begin{aligned}
V & =\left\{(x, y) \in \mathbb{Z}^{2}: a x+b y=c\right\}, \\
V_{0} & =\left\{(x, y) \in \mathbb{Z}^{2}: a x+b y=0\right\} .
\end{aligned}
$$

(a) If $\left(x^{\prime}, y^{\prime}\right) \in V$ is one particular solution, prove that V is equal to the set

$$
\left(x^{\prime}, y^{\prime}\right)+V_{0}:=\left\{\left(x^{\prime}+x, y^{\prime}+y\right):(x, y) \in V_{0}\right\} .
$$

(b) Let $d=\operatorname{gcd}(a, b)$ with $a=d a^{\prime}$ and $b=d b^{\prime}$ and assume that $c=d c^{\prime}$ for some $a^{\prime}, b^{\prime}, c^{\prime} \in \mathbb{Z}$. Prove that V is equal to the set

$$
V^{\prime}:=\left\{(x, y) \in \mathbb{Z}^{2}: a^{\prime} x+b^{\prime} y=c^{\prime}\right\} .
$$

(c) Now let $(a, b, c)=(3094,2513,21)$. Use the Extended Euclidean Algorithm to find one particular element $\left(x^{\prime}, y^{\prime}\right) \in V$. [Hint: From part (b) it is enough to find one particular element of $\left(x^{\prime}, y^{\prime}\right) \in V^{\prime}$.]
(d) Continuing from (c), use Problem 2 to find all elements of the set V_{0}. [Hint: From part (b) we know that $V_{0}=V_{0}^{\prime}=\left\{(x, y) \in \mathbb{Z}^{2}: a^{\prime} x+b^{\prime} y=0\right\}$.]

Problem 4. Consider an integer $n \geq 2$. We say that d is a proper divisor of n if $d \mid n$ and $1<d<n$. We say that $p \geq 2$ is prime if it has no proper divisor. Prove that

$$
\text { every integer } n \geq 2 \text { has a prime divisor } p \mid n \text {. }
$$

[Hint: Let S be the set of integers $n \geq 2$ that have no prime divisor. If this set is not empty then it must have a smallest element $m \in S$. You will need 1(c).]

