Problem 1. Prove the following properties for all integers $a, b, c \in \mathbb{Z}$.

- (a) If a|b and b|c then a|c.
- (b) If a|b and a|c then a|(bx + cy) for all integers $x, y \in \mathbb{Z}$.
- (c) If a|b and $b \neq 0$ then $|a| \leq |b|$. [Hint: Absolute value is multiplicative.]
- (d) If a|b and b|a then $a = \pm b$. [Hint: Use the fact that uv = 0 implies u = 0 or v = 0.]

Problem 2. Euclid's Lemma. For all integers $a, b, c \in \mathbb{Z}$ prove that

a|(bc) and gcd(a, b) = 1 imply that a|c.

[Hint: If gcd(a, b) = 1 then the Extended Euclidean Algorithm tells us that there exist (non-unique) integers $x, y \in \mathbb{Z}$ satisfying ax + by = 1.]

Problem 3. Let $a, b, c \in \mathbb{Z}$, with a and b not both zero, and consider the sets

$$V = \{(x, y) \in \mathbb{Z}^2 : ax + by = c\},\$$

$$V_0 = \{(x, y) \in \mathbb{Z}^2 : ax + by = 0\}.$$

(a) If $(x', y') \in V$ is one particular solution, prove that V is equal to the set

$$x', y') + V_0 := \{ (x' + x, y' + y) : (x, y) \in V_0 \}.$$

(b) Let $d = \gcd(a, b)$ with a = da' and b = db' and assume that c = dc' for some $a', b', c' \in \mathbb{Z}$. Prove that V is equal to the set

$$V' := \{ (x, y) \in \mathbb{Z}^2 : a'x + b'y = c' \}.$$

- (c) Now let (a, b, c) = (3094, 2513, 21). Use the Extended Euclidean Algorithm to find one particular element $(x', y') \in V$. [Hint: From part (b) it is enough to find one particular element of $(x', y') \in V'$.]
- (d) Continuing from (c), use Problem 2 to find **all elements** of the set V_0 . [Hint: From part (b) we know that $V_0 = V'_0 = \{(x, y) \in \mathbb{Z}^2 : a'x + b'y = 0\}$.]

Problem 4. Consider an integer $n \ge 2$. We say that d is a *proper divisor* of n if d|n and 1 < d < n. We say that $p \ge 2$ is *prime* if it has no proper divisor. Prove that

every integer $n \ge 2$ has a prime divisor p|n.

[Hint: Let S be the set of integers $n \ge 2$ that have no prime divisor. If this set is not empty then it must have a smallest element $m \in S$. You will need 1(c).]