
Math 230 Fall 2018
Homework 2 Drew Armstrong

Problem 1. De Morgan’s Laws say that for all statements P,Q we have

¬(P ∨Q) = ¬P ∧ ¬Q and ¬(P ∧Q) = ¬P ∨ ¬Q.

(a) Use truth tables to prove these laws.
(b) Use a truth table to prove that (P ⇒ Q) = (¬P ) ∨Q for all statements P,Q.
(c) Combine parts (a) and (b) to prove that for all statements P,Q we have

(P ⇒ Q) = (¬Q⇒ ¬P ).

Do not use a truth table.

(a) Here is a truth table proving ¬(P ∨Q) = ¬P ∧ ¬Q:

P Q P ∨Q ¬(P ∨Q) ¬P ¬Q ¬P ∧ ¬Q
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

And here is a truth table proving ¬(P ∧Q) = ¬P ∨ ¬Q:

P Q P ∧Q ¬(P ∧Q) ¬P ¬Q ¬P ∨ ¬Q
T T T F F F F
T F F T F T T
F T F T T F T
F F F T T T T

(b) And here is a truth table proving that (P ⇒ Q) = (¬P ) ∨Q:

P Q P ⇒ Q ¬P ¬P ∨Q
T T T F T
T F F F F
F T T T T
F F T T T

(c) Proof. From part (b) we know that (A ⇒ B) = ¬A ∨ B for all statements A and B.
Substituting A = P and B = Q gives

(P ⇒ Q) = ¬P ∨Q,

and substituting A = ¬Q and B = ¬P gives

(¬Q⇒ ¬P ) = ¬(¬Q) ∨ (¬P ) = Q ∨ ¬P.
Since ¬P ∨Q = Q ∨ ¬P we conclude that (P ⇒ Q) = (¬Q⇒ ¬P ). �

Problem 2. Practice with logical analysis.

(a) Use the results of Problem 1 to prove that for all statements P,Q,R we have

P ⇒ (Q ∨R) = (¬Q ∧ ¬R)⇒ ¬P.
Do not use a truth table.



(b) Use the result of (a) to prove that for all a, b, c, d ∈ Z we have

a + b ≤ c + d =⇒ a ≤ c or b ≤ d.

(c) Prove that the converse of the statement in part (b) is false. [Hint: To prove that a
universal statement is false it is enough to provide a single counterexample.]

(a) Proof. For all statements P,Q,R we have

P ⇒ (Q ∨R) = ¬(Q ∨R)⇒ ¬P by 1(c)

= (¬Q ∧ ¬R)⇒ ¬P. by 1(a)

�

(b) Let a, b, c, d ∈ Z and define the statements

P = “ a + b ≤ c + d, ”

Q = “ a ≤ c, ”

R = “ b ≤ d. ”

I claim that P ⇒ (Q ∨ R). Proof. By part (a) it is enough to prove that (¬Q ∧ ¬R) ⇒ ¬P .
In other words, we will prove that

(a > c and b > d) =⇒ (a + b > c + d).

So let us assume that a > c and b > d. By adding b to both sides of a > c we obtain

a > c

a + b > b + c,

and by adding c to both sides of b > d we obtain

b > d

b + c > c + d.

Then by the “transitivity” of the relation “>” we conclude that a + b > c + d. �

(c) The statement from (b) says that

∀a, b, c, d ∈ Z, (a + b ≤ c + d) =⇒ (a ≤ c ∨ b ≤ d).

and the converse of this statement says that

∀a, b, c, d ∈ Z, (a ≤ c ∨ b ≤ d) =⇒ (a + b ≤ c + d).

To prove that the converse is false we will prove that the opposite of the converse is true. By
applying de Morgan’s law and the property (P 6⇒ Q) = ¬(P ⇒ Q) = P ∧ ¬Q, the statement
we want to prove is

¬
[
∀a, b, c, d ∈ Z, (a ≤ c ∨ b ≤ d) =⇒ (a + b ≤ c + d)

]
= ∃a, b, c, d ∈ Z, (a ≤ c ∨ b ≤ d) 6=⇒ (a + b ≤ c + d)

= ∃a, b, c, d ∈ Z, (a ≤ c ∨ b ≤ d) ∧ ¬(a + b ≤ c + d)

= ∃a, b, c, d ∈ Z, (a ≤ c ∨ b ≤ d) ∧ (a + b > c + d).

In order to prove that such integers exist, it is enough to give one example. So let us choose
(a, b, c, d) = (1, 2, 1, 1). Then (1 ≤ 1 ∨ 2 ≤ 1) is a true statement because at least one of the
statements 1 ≤ 1 and 2 ≤ 1 is true, and the statement (1 + 2 > 1 + 1) is also true. �



[Remark: It is okay for you to skip some of the logical analysis and jump right to the coun-
terexample, but I wanted to show all the gory details for pedagogical reasons.]

Problem 3. I will guide you through an induction proof that

(a− 1)
∣∣∣(an − 1) for all integers a, n ∈ Z such that n ≥ 1.

For the purpose of the proof, let a ∈ Z be a fixed integer. We will use induction on n.

(a) Prove that (a− 1)
∣∣(an − 1) when n = 1.

(b) Now assume that (a− 1)
∣∣(an− 1) is true for some fixed n ≥ 1. In this case, prove that

(a− 1)
∣∣∣(an+1 − 1).

(a) Proof. Since (a− 1) = (a− 1) · 1 and 1 ∈ Z we conclude that (a− 1)
∣∣(a− 1). �

(b) Fix a positive integer n ≥ 1 and assume that (a− 1)
∣∣(an − 1). By definition this means

that there exists some k ∈ Z such that (an − 1) = (a − 1)k. Now multiply both sides of this
equation by a to get

(an − 1) = (a− 1)k

(an+1 − a) = (a− 1)ak,

and then add (a− 1) to both sides to get

(an+1 − a) = (a− 1)ak

(an+1 − a) + (a− 1) = (a− 1)ak + (a− 1)

(an+1 − 1) = (a− 1)(ak + 1).

Since (ak + 1) ∈ Z we conclude that (a− 1)
∣∣(an+1 − 1) as desired. �

[Remark: It follows, for example, that 58100 − 1 is a multiple of 57.]

Problem 4. For all integers d ∈ Z let us define the statement

P (d) := “ ∀n ∈ Z, d|n2 ⇒ d|n. ”

(a) Now fix an integer d ≥ 2 and prove that

P (d) =⇒
√
d 6∈ Q

[Hint: Mimic the proofs from class when d = 2 and d = 3.]
(b) Prove that P (5) is a true statement, and hence that

√
5 is irrational.

(c) Prove that P (12) is a false statement. [Remark: It is still true that
√

12 is irrational,
but the method of proof from part (a) will not work. Maybe you can see how to fix it.]

(a) Proof that P (d) ⇒
√
d 6∈ Q. Fix an integer d ≥ 2 and let us assume that P (d) is a true

statement. In other words, let us assume that

(∗) d|n2 ⇒ d|n for all n ∈ Z.



In this case we will prove that
√
d 6∈ Q. So let us assume for contradiction that

√
d ∈ Q.

Then we can write
√
d = a/b where a and b are integers with no common factors other than

±1. Now square both sides to get

d = a2/b2

db2 = a2.

Since b2 ∈ Z this last equation implies that d|b2 and then from (∗) we get d|n. In other words,
we have n = dk for some k ∈ Z. Substituting into the previous equation gives

db2 = a2

db2 = (dk)2

db2 = d2k2

b2 = da2.

Since a2 ∈ Z this last equation tells us that d|b2 and then from (∗) we get d|b. In summary, we
have shown that d|a and d|b, which contradicts the fact that a and b have no common factor.

We conclude that
√
d ∈ Q is false, and hence

√
d 6∈ Q. �

But is the statement P (d) true or false?

(b) P (5) is true, hence it follows from part (a) that
√

5 6∈ Q. Proof. For all n ∈ Z we want to
show that 5|n2 implies 5|n and we will do this by showing the contrapositive statement:

5 - n⇒ 5 - n2.

So consider any n ∈ Z and assume that 5 - n. There are four cases:

• If n = 5k + 1 for some k ∈ Z then we have

n2 = (5k + 1)2 = 25k2 + 10k + 1 = 5(5k2 + 2k) + 1.

• If n = 5k + 2 for some k ∈ Z then we have

n2 = (5k + 2)2 = 25k2 + 20k + 4 = 5(5k2 + 4k) + 4.

• If n = 5k + 3 for some k ∈ Z then we have

n2 = (5k + 3)2 = 25k2 + 30k + 9 = 5(5k2 + 6k + 1) + 4.

• If n = 5k + 4 for some k ∈ Z then we have

n2 = (5k + 4)2 = 25k2 + 40k + 16 = 5(5k2 + 8k + 3) + 1.

In any case, we conclude that 5 - n2. �

(c) P (12) is false. Proof. The opposite of the statement P (12) is

¬(∀n ∈ Z, 12|n2 ⇒ 12|n) = (∃n ∈ Z, 12|n2 6⇒ 12|n)

= (∃n ∈ Z, 12|n2 but 12 - n).

To prove the existence of such an integer n ∈ Z it is enough to take n = 6 and observe that

12 | 36 but 12 - 6.

�



Bonus Material.
√

12 6∈ Q.

Proof. We already proved in class that
√

3 6∈ Q is irrational. Now assume for contradiction
that

√
12 ∈ Q. This means we can write

√
12 = a/b for some integers a, b ∈ Z. But then we

have
√

12 = a/b

2
√

3 = a/b
√

3 = a/(2b).

Since a and 2b are integers this implies that
√

3 ∈ Q. Contradiction. �

[Remark: Much later in the course we will see that P (d) is a true statement for all integers d
that have no repeated prime factors. Then by mimicking the proof of the case d = 12 it
will follow that √

d 6∈ Z⇒
√
d 6∈ Q for all integers d ∈ Z.

But you won’t have to wait that long because there are easier ways to prove this.]


