Math 230 Fall 2018
Homework 2 Drew Armstrong

Problem 1. De Morgan’s Laws say that for all statements P, Q) we have
“(PVQ)=-PA-Q and “(PANQ)=-PV-Q.

(a) Use truth tables to prove these laws.
(b) Use a truth table to prove that (P = Q) = (=P) Vv @ for all statements P, Q.
(c) Combine parts (a) and (b) to prove that for all statements P, ) we have

(P=Q)=(-Q = —P).

Do not use a truth table.

(a) Here is a truth table proving =(P V Q) = =P A =Q:

P Q|PvVQ ~(PVQ) —-P -Q —-PA-Q
F

T T T F F F
T F T F F T F
F T T F T F F
F F F T T T T

And here is a truth table proving =(P A Q) = =P V =Q:

P Q|PAQ —~(PANQ) —-P —Q —PV-Q
T T| T F F F F
T F| F T F T T
F T| F T T F T
F F| F T T T T

(b) And here is a truth table proving that (P = Q) = (=P) V Q:

P Q|P=>Q -P -PVQ
T T| T F T
T F| F F F
FT| T T T
F F| T T T

(¢) Proof. From part (b) we know that (A = B) = —A V B for all statements A and B.
Substituting A = P and B = @ gives

(P=Q)=-PVQ,
and substituting A = -Q and B = =P gives
(+Q = ~P) = ~(~Q) V (~P) = Qv ~P.
Since =PV Q = @ V =P we conclude that (P = Q) = (-Q = —P). O

Problem 2. Practice with logical analysis.
(a) Use the results of Problem 1 to prove that for all statements P, Q, R we have

P=(QVR)=(-QA-R)= —P.

Do not use a truth table.



(b) Use the result of (a) to prove that for all a, b, c,d € Z we have
a+b<c+d = a<ec or b<d.

(c) Prove that the converse of the statement in part (b) is false. [Hint: To prove that a
universal statement is false it is enough to provide a single counterexample.]

(a) Proof. For all statements P, Q, R we have
P=(QVR)=-(QVR)=-P by 1(c)
= (-Q A—R) = —P. by 1(a)

(b) Let a,b,c,d € Z and define the statements
P=%a+b<c+d,”
Q — “a S c’ 7
R=%“p S d.”

I claim that P = (Q V R). Proof. By part (a) it is enough to prove that (-Q A -R) = —P.
In other words, we will prove that

(a>candb>d) = (a+b>c+d).
So let us assume that a > ¢ and b > d. By adding b to both sides of a > ¢ we obtain
a>c
a+b>b+c
and by adding ¢ to both sides of b > d we obtain
b>d
b+c>c+d.
Then by the “transitivity” of the relation “>” we conclude that a +b > c+d. O

(¢) The statement from (b) says that
Va,b,c,d € Z,(a+b<c+d) = (a<cVb<d).
and the converse of this statement says that
Va,b,c,d € Z,(a<cVb<d) = (a+b<c+d).
To prove that the converse is false we will prove that the opposite of the converse is true. By
applying de Morgan’s law and the property (P # Q) = -(P = Q) = P A —=Q, the statement
we want to prove is
—{Va,b,c,de Z,(a<cVb<d) = (a+b< c—{—d)}
=3da,b,c,d€Z,(a<cVb<d) == (a+b<c+d)
=3a,b,c,d€Z,(a<cVb<d)A-(a+b<c+d)
=3da,b,c,d€Z,(a<cVb<d)A(a+b>c+d).

In order to prove that such integers exist, it is enough to give one example. So let us choose
(a,b,c,d) = (1,2,1,1). Then (1 <1V 2 <1)is a true statement because at least one of the
statements 1 < 1 and 2 < 1 is true, and the statement (1 +2 > 1+ 1) is also true. O



[Remark: It is okay for you to skip some of the logical analysis and jump right to the coun-
terexample, but I wanted to show all the gory details for pedagogical reasons.]

Problem 3. I will guide you through an induction proof that
(a — 1)‘(@" —1) for all integers a,n € Z such that n > 1.

For the purpose of the proof, let a € Z be a fixed integer. We will use induction on n.

(a) Prove that (a — 1)}(@” —1) when n = 1.
(b) Now assume that (a —1)[(a™ — 1) is true for some fixed n > 1. In this case, prove that

(a— 1))(a"+1 —1).

(a) Proof. Since (a — 1) = (a—1)-1 and 1 € Z we conclude that (a — 1)|(a — 1). O

(b) Fix a positive integer n > 1 and assume that (a — 1)|(a™ — 1). By definition this means
that there exists some k € Z such that (a™ — 1) = (a — 1)k. Now multiply both sides of this
equation by a to get

(@"—1)=(a—1)k
(a" —a) = (a — 1)ak,
and then add (a — 1) to both sides to get

( n+1 —a

) = (a—1)ak

(@' —a)+(a—1) = (a—1)ak + (a — 1)
)=
(a

(@™ —1) = (a — 1)(ak + 1).

Since (ak 4 1) € Z we conclude that (a — 1)| n+1 1) as desired. O
[Remark: It follows, for example, that 58'%° — 1 is a multiple of 57.]

Problem 4. For all integers d € Z let us define the statement
P(d) := “VYn € Z,d|n? = d|n.”
(a) Now fix an integer d > 2 and prove that
P(d) = Vd ¢ Q

[Hint: Mimic the proofs from class when d = 2 and d = 3.]

(b) Prove that P(5) is a true statement, and hence that /5 is irrational.

(c) Prove that P(12) is a false statement. [Remark: It is still true that /12 is irrational,
but the method of proof from part (a) will not work. Maybe you can see how to fix it.]

(a) Proof that P(d) = v/d ¢ Q. Fix an integer d > 2 and let us assume that P(d) is a true
statement. In other words, let us assume that

(%) dn* = djn  for all n € Z.



In this case we will prove that Vd ¢ Q. So let us assume for contradiction that Vd e Q.
Then we can write v/d = a/b where a and b are integers with no common factors other than
+1. Now square both sides to get

d = a?/b*
dv? = o

Since b% € Z this last equation implies that d|b? and then from (x) we get d|n. In other words,
we have n = dk for some k € Z. Substituting into the previous equation gives

db? = a?

db? = (dk)?

db? = d?k?
b’ = da?.

Since a? € Z this last equation tells us that d|b? and then from (x) we get d|b. In summary, we
have shown that d|a and d|b, which contradicts the fact that a and b have no common factor.
We conclude that vd € Q is false, and hence v/d & Q. O

But is the statement P(d) true or false?
(b) P(5) is true, hence it follows from part (a) that /5 ¢ Q. Proof. For all n € Z we want to
show that 5|n? implies 5/n and we will do this by showing the contrapositive statement:
5tn=51n’
So consider any n € Z and assume that 51 n. There are four cases:
o If n =5k + 1 for some k € Z then we have
n? = (5k +1)% = 25k + 10k + 1 = 5(5k? + 2k) + 1.
o If n =5k + 2 for some k € Z then we have
n? = (5k +2)% = 25k? + 20k + 4 = 5(5k* 4 4k) + 4.
o If n =5k + 3 for some k € Z then we have
n? = (5k + 3)% = 25k? + 30k + 9 = 5(5k* + 6k + 1) + 4.
o If n =5k + 4 for some k € Z then we have
n? = (5k +4)% = 25k% + 40k + 16 = 5(5k* + 8k + 3) + 1.
In any case, we conclude that 5f n2. (]
(c) P(12) is false. Proof. The opposite of the statement P(12) is
—(Vn € Z,12|n* = 12|n) = (3n € Z,12|n? % 12|n)
= (3In € Z,12|n? but 12 n).
To prove the existence of such an integer n € Z it is enough to take n = 6 and observe that

1236 but  1246.
O



Bonus Material. V12 € Q.

Proof. We already proved in class that v/3 ¢ Q is irrational. Now assume for contradiction
that v/12 € Q. This means we can write /12 = a/b for some integers a,b € Z. But then we
have

V12 =a/b
2V3 =a/b
V3 = a/(2b).

Since a and 2b are integers this implies that V3 € Q. Contradiction. O

[Remark: Much later in the course we will see that P(d) is a true statement for all integers d
that have no repeated prime factors. Then by mimicking the proof of the case d = 12 it
will follow that

VdgZ=VdgQ for all integers d € Z.

But you won’t have to wait that long because there are easier ways to prove this.]



