Problem 1. De Morgan's Laws say that for all statements P, Q we have

$$
\neg(P \vee Q)=\neg P \wedge \neg Q \quad \text { and } \quad \neg(P \wedge Q)=\neg P \vee \neg Q
$$

(a) Use truth tables to prove these laws.
(b) Use a truth table to prove that $(P \Rightarrow Q)=(\neg P) \vee Q$ for all statements P, Q.
(c) Combine parts (a) and (b) to prove that for all statements P, Q we have

$$
(P \Rightarrow Q)=(\neg Q \Rightarrow \neg P) .
$$

Do not use a truth table.
(a) Here is a truth table proving $\neg(P \vee Q)=\neg P \wedge \neg Q$:

P	Q	$P \vee Q$	$\neg(P \vee Q)$	$\neg P$	$\neg Q$	$\neg P \wedge \neg Q$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

And here is a truth table proving $\neg(P \wedge Q)=\neg P \vee \neg Q$:

P	Q	$P \wedge Q$	$\neg(P \wedge Q)$	$\neg P$	$\neg Q$	$\neg P \vee \neg Q$
T	T	T	F	F	F	F
T	F	F	T	F	T	T
F	T	F	T	T	F	T
F	F	F	T	T	T	T

(b) And here is a truth table proving that $(P \Rightarrow Q)=(\neg P) \vee Q$:

P	Q	$P \Rightarrow Q$	$\neg P$	$\neg P \vee Q$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

(c) Proof. From part (b) we know that $(A \Rightarrow B)=\neg A \vee B$ for all statements A and B. Substituting $A=P$ and $B=Q$ gives

$$
(P \Rightarrow Q)=\neg P \vee Q,
$$

and substituting $A=\neg Q$ and $B=\neg P$ gives

$$
(\neg Q \Rightarrow \neg P)=\neg(\neg Q) \vee(\neg P)=Q \vee \neg P
$$

Since $\neg P \vee Q=Q \vee \neg P$ we conclude that $(P \Rightarrow Q)=(\neg Q \Rightarrow \neg P)$.
Problem 2. Practice with logical analysis.
(a) Use the results of Problem 1 to prove that for all statements P, Q, R we have

$$
P \Rightarrow(Q \vee R)=(\neg Q \wedge \neg R) \Rightarrow \neg P
$$

Do not use a truth table.
(b) Use the result of (a) to prove that for all $a, b, c, d \in \mathbb{Z}$ we have

$$
a+b \leq c+d \quad \Longrightarrow \quad a \leq c \quad \text { or } \quad b \leq d .
$$

(c) Prove that the converse of the statement in part (b) is false. [Hint: To prove that a universal statement is false it is enough to provide a single counterexample.]
(a) Proof. For all statements P, Q, R we have

$$
\begin{aligned}
P \Rightarrow(Q \vee R) & =\neg(Q \vee R) \Rightarrow \neg P & & \text { by } 1(\mathrm{c}) \\
& =(\neg Q \wedge \neg R) \Rightarrow \neg P . & & \text { by } 1(\text { a) }
\end{aligned}
$$

(b) Let $a, b, c, d \in \mathbb{Z}$ and define the statements

$$
\begin{aligned}
& P=" a+b \leq c+d, " \\
& Q=" a \leq c, " \\
& R=" b \leq d . "
\end{aligned}
$$

I claim that $P \Rightarrow(Q \vee R)$. Proof. By part (a) it is enough to prove that $(\neg Q \wedge \neg R) \Rightarrow \neg P$. In other words, we will prove that

$$
(a>c \text { and } b>d) \quad \Longrightarrow \quad(a+b>c+d)
$$

So let us assume that $a>c$ and $b>d$. By adding b to both sides of $a>c$ we obtain

$$
\begin{aligned}
a & >c \\
a+b & >b+c,
\end{aligned}
$$

and by adding c to both sides of $b>d$ we obtain

$$
\begin{gathered}
b>d \\
b+c>c+d .
\end{gathered}
$$

Then by the "transitivity" of the relation " $>$ " we conclude that $a+b>c+d$.
(c) The statement from (b) says that

$$
\forall a, b, c, d \in \mathbb{Z},(a+b \leq c+d) \Longrightarrow(a \leq c \vee b \leq d)
$$

and the converse of this statement says that

$$
\forall a, b, c, d \in \mathbb{Z},(a \leq c \vee b \leq d) \Longrightarrow(a+b \leq c+d) .
$$

To prove that the converse is false we will prove that the opposite of the converse is true. By applying de Morgan's law and the property $(P \nRightarrow Q)=\neg(P \Rightarrow Q)=P \wedge \neg Q$, the statement we want to prove is

$$
\begin{aligned}
& \neg[\forall a, b, c, d \in \mathbb{Z},(a \leq c \vee b \leq d) \Longrightarrow(a+b \leq c+d)] \\
& =\exists a, b, c, d \in \mathbb{Z},(a \leq c \vee b \leq d) \nRightarrow(a+b \leq c+d) \\
& =\exists a, b, c, d \in \mathbb{Z},(a \leq c \vee b \leq d) \wedge \neg(a+b \leq c+d) \\
& =\exists a, b, c, d \in \mathbb{Z},(a \leq c \vee b \leq d) \wedge(a+b>c+d) .
\end{aligned}
$$

In order to prove that such integers exist, it is enough to give one example. So let us choose $(a, b, c, d)=(1,2,1,1)$. Then $(1 \leq 1 \vee 2 \leq 1)$ is a true statement because at least one of the statements $1 \leq 1$ and $2 \leq 1$ is true, and the statement $(1+2>1+1)$ is also true.
[Remark: It is okay for you to skip some of the logical analysis and jump right to the counterexample, but I wanted to show all the gory details for pedagogical reasons.]

Problem 3. I will guide you through an induction proof that

$$
(a-1) \mid\left(a^{n}-1\right) \quad \text { for all integers } a, n \in \mathbb{Z} \text { such that } n \geq 1 \text {. }
$$

For the purpose of the proof, let $a \in \mathbb{Z}$ be a fixed integer. We will use induction on n.
(a) Prove that $(a-1) \mid\left(a^{n}-1\right)$ when $n=1$.
(b) Now assume that $(a-1) \mid\left(a^{n}-1\right)$ is true for some fixed $n \geq 1$. In this case, prove that

$$
(a-1) \mid\left(a^{n+1}-1\right) .
$$

(a) Proof. Since $(a-1)=(a-1) \cdot 1$ and $1 \in \mathbb{Z}$ we conclude that $(a-1) \mid(a-1)$.
(b) Fix a positive integer $n \geq 1$ and assume that $(a-1) \mid\left(a^{n}-1\right)$. By definition this means that there exists some $k \in \mathbb{Z}$ such that $\left(a^{n}-1\right)=(a-1) k$. Now multiply both sides of this equation by a to get

$$
\begin{aligned}
\left(a^{n}-1\right) & =(a-1) k \\
\left(a^{n+1}-a\right) & =(a-1) a k,
\end{aligned}
$$

and then add $(a-1)$ to both sides to get

$$
\begin{aligned}
\left(a^{n+1}-a\right) & =(a-1) a k \\
\left(a^{n+1}-a\right)+(a-1) & =(a-1) a k+(a-1) \\
\left(a^{n+1}-1\right) & =(a-1)(a k+1) .
\end{aligned}
$$

Since $(a k+1) \in \mathbb{Z}$ we conclude that $(a-1) \mid\left(a^{n+1}-1\right)$ as desired.
[Remark: It follows, for example, that $58^{100}-1$ is a multiple of 57 .]
Problem 4. For all integers $d \in \mathbb{Z}$ let us define the statement

$$
P(d):=" \forall n \in \mathbb{Z}, d\left|n^{2} \Rightarrow d\right| n . "
$$

(a) Now fix an integer $d \geq 2$ and prove that

$$
P(d) \Longrightarrow \sqrt{d} \notin \mathbb{Q}
$$

[Hint: Mimic the proofs from class when $d=2$ and $d=3$.]
(b) Prove that $P(5)$ is a true statement, and hence that $\sqrt{5}$ is irrational.
(c) Prove that $P(12)$ is a false statement. [Remark: It is still true that $\sqrt{12}$ is irrational, but the method of proof from part (a) will not work. Maybe you can see how to fix it.]
(a) Proof that $P(d) \Rightarrow \sqrt{d} \notin \mathbb{Q}$. Fix an integer $d \geq 2$ and let us assume that $P(d)$ is a true statement. In other words, let us assume that

$$
\begin{equation*}
d\left|n^{2} \Rightarrow d\right| n \quad \text { for all } n \in \mathbb{Z} \tag{*}
\end{equation*}
$$

In this case we will prove that $\sqrt{d} \notin \mathbb{Q}$. So let us assume for contradiction that $\sqrt{d} \in \mathbb{Q}$. Then we can write $\sqrt{d}=a / b$ where a and b are integers with no common factors other than ± 1. Now square both sides to get

$$
\begin{aligned}
d & =a^{2} / b^{2} \\
d b^{2} & =a^{2} .
\end{aligned}
$$

Since $b^{2} \in \mathbb{Z}$ this last equation implies that $d \mid b^{2}$ and then from $(*)$ we get $d \mid n$. In other words, we have $n=d k$ for some $k \in \mathbb{Z}$. Substituting into the previous equation gives

$$
\begin{aligned}
d b^{2} & =a^{2} \\
d b^{2} & =(d k)^{2} \\
d b^{2} & =d^{2} k^{2} \\
b^{2} & =d a^{2} .
\end{aligned}
$$

Since $a^{2} \in \mathbb{Z}$ this last equation tells us that $d \mid b^{2}$ and then from (*) we get $d \mid b$. In summary, we have shown that $d \mid a$ and $d \mid b$, which contradicts the fact that a and b have no common factor. We conclude that $\sqrt{d} \in \mathbb{Q}$ is false, and hence $\sqrt{d} \notin \mathbb{Q}$.

But is the statement $P(d)$ true or false?
(b) $P(5)$ is true, hence it follows from part (a) that $\sqrt{5} \notin \mathbb{Q}$. Proof. For all $n \in \mathbb{Z}$ we want to show that $5 \mid n^{2}$ implies $5 \mid n$ and we will do this by showing the contrapositive statement:

$$
5 \nmid n \Rightarrow 5 \nmid n^{2} .
$$

So consider any $n \in \mathbb{Z}$ and assume that $5 \nmid n$. There are four cases:

- If $n=5 k+1$ for some $k \in \mathbb{Z}$ then we have

$$
n^{2}=(5 k+1)^{2}=25 k^{2}+10 k+1=5\left(5 k^{2}+2 k\right)+1 .
$$

- If $n=5 k+2$ for some $k \in \mathbb{Z}$ then we have

$$
n^{2}=(5 k+2)^{2}=25 k^{2}+20 k+4=5\left(5 k^{2}+4 k\right)+4 .
$$

- If $n=5 k+3$ for some $k \in \mathbb{Z}$ then we have

$$
n^{2}=(5 k+3)^{2}=25 k^{2}+30 k+9=5\left(5 k^{2}+6 k+1\right)+4 .
$$

- If $n=5 k+4$ for some $k \in \mathbb{Z}$ then we have

$$
n^{2}=(5 k+4)^{2}=25 k^{2}+40 k+16=5\left(5 k^{2}+8 k+3\right)+1 .
$$

In any case, we conclude that $5 \nmid n^{2}$.
(c) $P(12)$ is false. Proof. The opposite of the statement $P(12)$ is

$$
\begin{aligned}
\neg\left(\forall n \in \mathbb{Z}, 12\left|n^{2} \Rightarrow 12\right| n\right) & =\left(\exists n \in \mathbb{Z}, 12\left|n^{2} \nRightarrow 12\right| n\right) \\
& =\left(\exists n \in \mathbb{Z}, 12 \mid n^{2} \text { but } 12 \nmid n\right) .
\end{aligned}
$$

To prove the existence of such an integer $n \in \mathbb{Z}$ it is enough to take $n=6$ and observe that

$$
12 \mid 36 \quad \text { but } \quad 12 \nmid 6 \text {. }
$$

Bonus Material. $\sqrt{12} \notin \mathbb{Q}$.
Proof. We already proved in class that $\sqrt{3} \notin \mathbb{Q}$ is irrational. Now assume for contradiction that $\sqrt{12} \in \mathbb{Q}$. This means we can write $\sqrt{12}=a / b$ for some integers $a, b \in \mathbb{Z}$. But then we have

$$
\begin{aligned}
\sqrt{12} & =a / b \\
2 \sqrt{3} & =a / b \\
\sqrt{3} & =a /(2 b) .
\end{aligned}
$$

Since a and $2 b$ are integers this implies that $\sqrt{3} \in \mathbb{Q}$. Contradiction.
[Remark: Much later in the course we will see that $P(d)$ is a true statement for all integers d that have no repeated prime factors. Then by mimicking the proof of the case $d=12$ it will follow that

$$
\sqrt{d} \notin \mathbb{Z} \Rightarrow \sqrt{d} \notin \mathbb{Q} \quad \text { for all integers } d \in \mathbb{Z}
$$

But you won't have to wait that long because there are easier ways to prove this.]

