Problem 1. De Morgan's Laws say that for all statements P, Q we have

$$
\neg(P \vee Q)=\neg P \wedge \neg Q \quad \text { and } \quad \neg(P \wedge Q)=\neg P \vee \neg Q
$$

(a) Use truth tables to prove these laws.
(b) Use a truth table to prove that $(P \Rightarrow Q)=(\neg P) \vee Q$ for all statements P, Q.
(c) Combine parts (a) and (b) to prove that for all statements P, Q we have

$$
(P \Rightarrow Q)=(\neg Q \Rightarrow \neg P) .
$$

Do not use a truth table.

Problem 2. Practice with logical analysis.
(a) Use the results of Problem 1 to prove that for all statements P, Q, R we have

$$
P \Rightarrow(Q \vee R)=(\neg Q \wedge \neg R) \Rightarrow \neg P
$$

Do not use a truth table.
(b) Use the result of (a) to prove that for all $a, b, c, d \in \mathbb{Z}$ we have

$$
a+b \leq c+d \quad \Longrightarrow \quad a \leq c \quad \text { or } \quad b \leq d .
$$

(c) Prove that the converse of the statement in part (b) is false. [Hint: To prove that a universal statement is false it is enough to provide a single counterexample.]

Problem 3. I will guide you through an induction proof that

$$
(a-1) \mid\left(a^{n}-1\right) \quad \text { for all integers } a, n \in \mathbb{Z} \text { such that } n \geq 1
$$

For the purpose of the proof, let $a \in \mathbb{Z}$ be a fixed integer. We will use induction on n.
(a) Prove that $(a-1) \mid\left(a^{n}-1\right)$ when $n=1$.
(b) Now assume that $(a-1) \mid\left(a^{n}-1\right)$ is true for some fixed $n \geq 1$. In this case, prove that

$$
(a-1) \mid\left(a^{n+1}-1\right)
$$

Problem 4. For all integers $d \in \mathbb{Z}$ let us define the statement

$$
P(d):=" \forall n \in \mathbb{Z}, d\left|n^{2} \Rightarrow d\right| n . "
$$

(a) Now fix an integer $d \geq 1$ and prove that

$$
P(d) \Longrightarrow \sqrt{d} \notin \mathbb{Q}
$$

[Hint: Mimic the proofs from class when $d=2$ and $d=3$.]
(b) Prove that $P(5)$ is a true statement, and hence that $\sqrt{5}$ is irrational.
(c) Prove that $P(12)$ is a false statement. [Remark: It is still true that $\sqrt{12}$ is irrational, but the method of proof from part (a) will not work. Maybe you can see how to fix it.]

