Problem 1.

(a) Use the Extended Euclidean Algorithm to find one solution $x, y \in \mathbb{Z}$ of the equation 36x + 15y = 3.

Consider the following table of triples $x, y, z \in \mathbb{Z}$ such that 36x + 15y = z:

x	y	z		row operation
1	0	36	(row 1)	
0		15	(row 2)	
1	-2	6	(row 3)	$= (\text{row } 1) - 2 \cdot (\text{row } 2)$
-2	5	3	(row 4)	$= (\operatorname{row} 2) - 2 \cdot (\operatorname{row} 3)$
5	-12	0	(row 5)	$= (row 1) - 2 \cdot (row 2) = (row 2) - 2 \cdot (row 3) = (row 3) - 2 \cdot (row 4)$

From (row 4) we obtain the solution (x, y) = (-2, 5).

(b) Tell me the **general solution** $x, y \in \mathbb{Z}$ of the equation 36x + 15y = 0. [You do not need to prove anything.]

Divide the equation by gcd(36, 15) (which is 3) to obtain 12x + 5y = 0. Since 12 and 5 are coprime, the general solution is

$$(x, y) = (5k, -12k)$$
 for all $k \in \mathbb{Z}$.

This solution can also be obtained from (row 5) above.

(c) Now tell me the general solution $x, y \in \mathbb{Z}$ of the equation 36x + 15y = 3.

Adding the solutions from (a) and (b) gives

$$(x,y) = (-2,5) + (5k,-12) = (-2+5k,5-12k)$$
 for all $k \in \mathbb{Z}$.

Problem 2. Consider $a, b, c, x \in \mathbb{Z}$ such that a = bx + c, and define the following sets:

$$Div(a, b) = \{ d \in \mathbb{Z} : d|a \text{ and } d|b \}$$
$$Div(b, c) = \{ d \in \mathbb{Z} : d|b \text{ and } d|c \}.$$

(a) Prove that $\text{Div}(b, c) \subseteq \text{Div}(a, b)$.

Proof. Let $d \in \text{Div}(b, c)$, so that b = db' and c = dc' for some $b', c' \in \mathbb{Z}$. Then we have a = bx + c = (db')x + (dc') = d(b'x + c'),

which implies that d|a and hence $d \in \text{Div}(a, b)$.

(b) Prove that $\text{Div}(a, b) \subseteq \text{Div}(b, c)$.

Proof. Let $d \in \text{Div}(a, b)$, so that a = da' and b = db' for some $a', b' \in \mathbb{Z}$. Then we have c = a - bx = (da') - (db')x = d(a' - b'x),

which implies that d|c and hence $d \in \text{Div}(b, c)$.

(c) Use the result of (a) and (b) to prove that gcd(a, b) = gcd(b, c).

Proof. From (a) and (b) we conclude tha Div(a, b) = Div(b, c). Since the sets are equal, they must have the largest element.

Problem 3. Division With Remainder.

(a) Accurately state the Division Theorem.

For all $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique integers $q, r \in \mathbb{Z}$ such that

$$\begin{cases} a = qb + r, \\ 0 \le r < |b|. \end{cases}$$

Remark: These unique q, r are called the quotient and remainder of $a \mod b$.

(b) Explain why 3 is the remainder of 15 mod 6.

Because

$$\begin{cases} 15 = 2 \cdot 6 + 3, \\ 0 \le 3 < |6|. \end{cases}$$

(c) Explain why the equation 15 = 6x has no integer solution $x \in \mathbb{Z}$.

Assume for contradiction that such an integer $x \in \mathbb{Z}$ exists. Then we have

$$\begin{cases} 15 = x \cdot 6 + 0, \\ 0 \le 0 < |6|. \end{cases}$$

Since $0 \neq 3$ this contradicts the uniqueness of the remainder.

Problem 4. Let $\alpha \in \mathbb{R}$ be a real number that is **not** an integer.

(a) Use Well-Ordering to prove that there exists an integer $m \in \mathbb{Z}$ with $m - 1 < \alpha < m$. [Hint: Let S be the set of integers that are greater than α .]

Proof. Let S be the set of integers that are greater than α . By Well-Ordering this set has a least element, say m. Since $m \in S$ we have $\alpha < m$, and since m - 1 < m we have $m - 1 \notin S$, hence $m - 1 \leq \alpha$. Finally, since α is not an integer we have $m - 1 < \alpha$. \Box

(b) If the integers $m, n \in \mathbb{Z}$ satisfy $m - 1 < \alpha < m$ and $n - 1 < \alpha < n$, prove that m = n. [Hint: Show that m < n leads to a contradiction.]

Proof. Assume for contradiction that m < n. Then we have

 $n - 1 < \alpha < m < n,$

which implies that n-1 < m < n. This contradicts the fact that there are no integers between n-1 and n. If you don't believe that, subtract n-1 to obtain 0 < m-n+1 < 1. This contradicts the fact that there are no integers between 0 and 1.

The same proof shows that n < m is impossible, so we conclude that m = n.

[Remark: Putting (a) and (b) together, we conclude that there exists a **unique** integer $m \in \mathbb{Z}$ such that $m - 1 < \alpha < m$.]