Problem 1.

(a) State the principle of the contrapositive.

For all statements P, Q we have

$$
(P \Rightarrow Q)=(\neg Q \Rightarrow \neg P)
$$

(b) State de Morgan's law.

For all statements P, Q we have

$$
\neg(P \vee Q)=\neg P \wedge \neg Q \quad \text { and } \quad \neg(P \wedge Q)=\neg P \vee \neg Q
$$

(c) Explicitly use these two principles to prove for all statements P, Q, R that

$$
P \Rightarrow(Q \vee R)=(\neg Q \wedge \neg R) \Rightarrow \neg P
$$

Do not use a truth table.
Proof. For all statements P, Q, R we have

$$
\begin{aligned}
P \Rightarrow(Q \vee R) & =\neg(Q \vee R) \Rightarrow \neg P, & & \text { from }(\mathrm{a}) \\
& =(\neg Q \wedge \neg R) \Rightarrow \neg P . & & \text { from }(\mathrm{b})
\end{aligned}
$$

Problem 2. Let $m, n \in \mathbb{Z}$ be any integers.
(a) If either m or n is even, prove that $m n$ is even.

Proof 1. There are two cases. (Case 1) If m is even then we can write $m=2 k$ for some $k \in \mathbb{Z}$. It follows that $m n=(2 k) n=2(k n)$ is even. (Case 2) If n is even then we can write $n=2 \ell$ for some $\ell \in \mathbb{Z}$ It follows that $m n=m(2 \ell)=2(m \ell)$ is even.
[Remark: Here I have used the principle $(P \vee Q) \Rightarrow R=(P \Rightarrow R) \wedge(Q \Rightarrow R)$.]
Proof 2. Without loss of generality, let us assume that m is even. Then we can write $m=2 k$ for some $k \in \mathbb{Z}$ and it follows that $m n=(2 k) n=2(k n)$ is even.
(b) If $m n$ is even prove that either m or n is even. [Hint: 1(c).]

Proof. Consider the statements $P=" m n$ is even," $Q=" m$ is even" and $R=" n$ is even." We are asked to prove that $P \Rightarrow(Q \vee R)$, which by $1(\mathrm{c})$ is equivalent to the statement $(\neg Q \wedge \neg R) \Rightarrow \neg P$. In other words, we are asked to prove:
"if m and n are both odd then $m n$ is odd."
So let us assume that m and n are both odd. This means that there exist $k, \ell \in \mathbb{Z}$ such that $m=2 k+1$ and $n=2 \ell+1$. It follows that

$$
m n=(2 k+1)(2 \ell+1)=4 k \ell+2 k+2 \ell+1=2(2 k \ell+k+\ell)+1
$$

which is odd.

Problem 3.

(a) For integers $a, b \in \mathbb{Z}$, state the formal definition of " $a \mid b$."

$$
" a \mid b "=" \exists k \in \mathbb{Z}, a k=b "
$$

(b) For all $n \geq 1$ consider the statement $P(n)=" 3 \mid\left(4^{n}-1\right)$." Prove that $P(1)$ is true.

The statement is $P(1)=" 3 \mid 3$." This statement is true because $3 \cdot 1=3$ and $1 \in \mathbb{Z}$.
(c) Now consider any positive integer $n \geq 1$ and assume for induction that $P(n)$ is true. In this case prove that $P(n+1)$ is also true.

Proof. If $P(n)$ is true then there exists $k \in \mathbb{Z}$ such that $3 k=4^{n}-1$. But then we have

$$
\begin{aligned}
4(3 k) & =4\left(4^{n}-1\right) \\
12 k & =4^{n+1}-4 \\
12 k+3 & =4^{n+1}-1 \\
3(4 k+1) & =4^{n+1}-1,
\end{aligned}
$$

which implies that $P(n+1)$ is true.
Problem 4. Consider the followiing statement:
"For all $n \in \mathbb{Z}$, if $3 \nmid n$ then there exists $k \in \mathbb{Z}$ such that $n=3 k+1$."
(a) Prove that this statement is false.

Proof. I claim that $n=2$ is a counterexample. Indeed, we have $3 \nmid 2$, but there does not exist $k \in \mathbb{Z}$ such that $2=3 k+1$. In other words, for all $k \in \mathbb{Z}$ we have $2 \neq 3 k+1$.
(b) Write down the correct version: " $\forall n \in \mathbb{Z}$, if $3 \nmid n$ then $\exists k \in \mathbb{Z}$ such that ? "

$$
n=3 k+1 \quad \text { or } \quad n=3 k+2
$$

(c) Use the correct version to prove that for all $n \in \mathbb{Z}$ we have $3\left|n^{2} \Rightarrow 3\right| n$.

Proof. We will prove the contrapositive statement that $3 \nmid n \Rightarrow 3 \nmid n^{2}$ for all $n \in \mathbb{Z}$. So consider any $n \in \mathbb{Z}$ and assume that $3 \nmid n$. From part (b) this means that $n=3 k+1$ or $n=3 k+2$ for some $k \in \mathbb{Z}$. In the first case we have

$$
n^{2}=(3 k+1)^{2}=9 k^{2}+6 k+1=3\left(3 k^{2}+2 k\right)+1
$$

and in the second case we have

$$
n^{2}=(3 k+2)^{2}=9 k^{2}+12 k+4=3\left(3 k^{2}+4 k+1\right)+1
$$

In either case we conclude that $3 \nmid n^{2}$.

