
Math 230 D Fall 2015
Homework 5 Drew Armstrong

Problem 1. Multiplicative Cancellation in Z. Many times we’ve used the fact that the
integers have multiplicative cancellation, but we never proved it. Let’s prove it now.

(a) Prove that for all integers a, b ∈ Z we have

(ab = 0)⇒ (a = 0 or b = 0).

[Hint: You can assume the following two facts: (1) For all x, y, z ∈ Z, (x < y and 0 <
z) ⇒ (xz < yz). (2) For all x, y, z,∈ Z, (x < y and z < 0) ⇒ (yz < xz). Now there
are four cases.]

(b) Use the result of part (a) to prove that for all integers a, b, c ∈ Z we have

(ab = ac and a 6= 0)⇒ (b = c).

Proof. For part (a) we will prove the contrapositive statement, that if a 6= 0 and b 6= 0 then
ab 6= 0. The proof will use the fact that 0n = 0 for all n ∈ Z so first let me recall the proof of
this fact. We have

(0 + 0)n = 0n (A3)

0n + 0n = 0n (D)

0n +��0n = 0 +��0n (A3)

0n = 0. (additive cancellation)

Now consider any a, b ∈ Z and assume that a 6= 0 and b 6= 0. There are four cases.

Case 1: If a > 0 and b > 0 then we have

a > 0, (assumption)

ab > 0b, (1)

ab > 0, (above)

hence ab 6= 0.

Case 2: If a > 0 and b < 0 then we have

a > 0, (assumption)

ab < 0b, (2)

ab < 0, (above)

hence ab 6= 0.

Case 3: If a < 0 and b > 0 then we have

a < 0, (assumption)

ab < 0b, (1)

ab < 0, (above)

hence ab 6= 0.



Case 4: If a < 0 and b < 0 then we have

a < 0, (assumption)

ab > 0b, (2)

ab > 0, (above)

hence ab 6= 0.

This completes the proof of (a). For part (b) consider integers a, b, c ∈ Z such that ab = ac
and a 6= 0. Then we have

ab = ac,

ab− ac = 0,

a(b− c) = 0.

If b− c 6= 0 then since a 6= 0 part (a) would imply a(b− c) 6= 0. Contradiction. We conclude
that b− c = 0, hence b = c as desired. �

[Remark: Multiplicative cancellation is a fairly subtle property of the integers, involving the interplay
of the axioms of addition, multiplication, and order. I guess we could short-circuit this proof by
taking multiplicative cancellation as an axiom, but it’s typically not done that way. If you study
more abstract algebra you will find that a ring with multiplicative cancellation is called an “integral
domain”.]

Problem 2. Multiplicative Cancellation in Z/n. Fix a nonzero integer n ∈ Z and
consider the following set of abstract symbols

Z/n := {[a]n : a ∈ Z}.
We define “equality” of symbols by ([a]n = [b]n)⇔ (n|(a− b)) (we proved in class that this is
an equivalence relation), “addition” of symbols by [a]n + [b]n := [a + b]n and “multiplication”
of symbols by [a]n · [b]n := [ab]n.

(a) Prove that addition and multiplication of symbols is well-defined. That is, if [a]n = [b]n
and [c]n = [d]n prove that we must have [a]n+[c]n = [b]n+[d]n and [a]n ·[c]n = [b]n ·[d]n.

(b) One can check (but please don’t) that Z/n satisfies the first eight axioms of Z with
additive identity element [0]n ∈ Z/n and multiplicative identity element [1]n ∈ Z/n.
Prove that the element [a]n ∈ Zn has a multiplicative inverse if and only if gcd(a, n) = 1.
[Hint: Recall that (gcd(a, n) = 1)⇔ (∃x, y ∈ Z, ax + ny = 1).]

(c) Additive cancellation in Z/n works exactly as in Z, but multiplicative cancellation is
more complicated. Prove that the following statement is true for all [b]n, [c]n ∈ Z/n if
and only if gcd(a, n) = 1:

([a]n · [b]n = [a]n · [c]n)⇒ ([b]n = [c]n).

Proof. For part (a) assume that we have [a]n = [b]n and [c]n = [d]n. In other words, there
exist integers k, ` ∈ Z such that a − b = nk and c − d = n`. In this case we want to prove
that [a]n + [c]n = [b]n + [d]n (that is, [a + c]n = [b + d]n) and [a]n · [c]n = [b]n · [d]n (that is,
[ac]n = [bd]n). For the first statement note that

(a + c)− (b + d) = (a− b) + (c− d)

= nk + n`

= n(k + `),



which implies that [a + c]n = [b + d]n as desired. For the second statement note that

ac− bd = ac− bc + bc− bd

= (a− b)c + b(c− d)

= nkc + bn`

= n(kc + b`),

which implies that [ac]n = [bd]n as desired.
For part (b), first assume that gcd(a, n) = 1. Then by Bézout’s Identity there exist integers

x, y ∈ Z such that ax + ny = 1. Reducing this equation mod n gives

[ax + ny]n = [1]n

[a]n · [x]n + [n]n · [y]n = [1]n

[a]n · [x]n + [0]n · [y]n = [1]n

[a]n · [x]n + [0]n = [1]n

[a]n · [x]n = [1]n,

hence [x]n is a multiplicative inverse of [a]n as desired. Conversely, assume that there exists
[x]n ∈ Z/n such that [a]n · [x]n = [1]n. Since [ax]n = [1]n, there exists k ∈ Z such that
ax− 1 = nk, and hence ax + n(−k) = 1. We have proved on multiple occasions that this last
equation implies gcd(a, n) = 1.

Now fix an integer a and consider two statements P = “ gcd(a, n) = 1” and Q =“for all
b, c ∈ Z we have ([a]n · [b]n = [a]n · [c]n)⇒ ([b]n = [c]n)”. First we will prove that P ⇒ Q. So
assume that gcd(a, n) = 1. By part (b) there exists x ∈ Z such that [a]n · [x]n = [1]n. Now
consider any b, c ∈ Z and assume that [a]n · [b]n = [a]n · [c]n. Multiplying both sides by [x]n
gives

[a]n · [b]n = [a]n · [c]n
[a]n · [x]n · [b]n = [a]n · [x]n · [c]n

[1]n · [b]n = [1]n · [c]n
[b]n = [c]n,

as desired. Next we want to show that Q⇒ P . This is hard to do so instead we’ll prove the
contrapositive statement ¬P ⇒ ¬Q. So assume that gcd(a, n) = d 6= 1. In this case we want
to show that there exist integers b, c ∈ Z such that [a]n · [b]n = [a]n · [c]n and [b]n 6= [c]n.
(Check that this is indeed the opposite of the statement Q. Aren’t you glad we studied logic
earlier?) Since d is a common divisor of a and n we have a = da′ and n = dn′ for some integers
a′, n′ ∈ Z. Then we have

[a]n · [n′]n = [an′]n

= [(da′)n′]n

= [a′(dn′)]n

= [a′n]n

= [a′]n · [n]n

= [a′]n · [0]n

= [0]n

= [a]n · [0]n.



But I claim that [n′]n 6= [0]n. Indeed, if [n′]n = [0]n then we have n′ = nk for some k ∈ Z and
hence n = dn′ = d(nk′) = n(dk′). Now since n 6= 0, Problem 1(b) implies that 1 = dk′ and
hence d = 1. Contradiction. Thus we can define b = n′ and c = 0. �

[Remark: The proof that Q ⇒ P was a little (okay, a lot) tricky. The trick was finding a
counterexample to cancellation for each pair of a and n such that gcd(a, n) 6= 1. The grader
will award full points if you provide a counterexample for one specific pair of a and n. I gave
the example [2]6 · [5]6 = [2]6 · [2]6 in class.]

Problem 3. Induction Practice. Use induction to prove that for all integers n ≥ 1 the
following statement holds:

“For any n integers a1, a2, . . . , an ∈ Z such that [ai]4 = [1]4 for all i ∈ {1, 2, . . . , n},
it follows that [a1a2 · · · an]4 = [1]4.”

[Hint: Call the statement P (n). Verify that P (1) is true. Now fix an integer k ≥ 1 and
assume for induction that P (k) is true. In this case, prove that P (k + 1) is also true.]

Proof. First note that the statement P (1) is true. Indeed, given an integer a1 ∈ Z such that
[a1]4 = [1]4, it does follow that [a1]4 = [1]4.

Now fix an integer k ≥ 1 and assume for induction that P (k) is true. That is, assume that
for any k integers a1, a2, . . . , ak ∈ Z such that [ai]4 = [1]4 for all i ∈ {1, 2, . . . , k}, it follows
that [a1a2 · · · ak]4 = [1]4. In this hypothetical case we will show that the statement P (k + 1)
is also true. So consider any k + 1 integers a1, a2, . . . , ak+1 ∈ Z such that [ai]4 = [1]4 for all
i ∈ {1, 2, . . . , k + 1}. We want to show that [a1a2 · · · ak+1]4 = [1]4. Indeed, we have

[a1a2 · · · ak+1]4 = [(a1a2 · · · ak)ak+1]4

= [a1a2 · · · ak]4 · [ak+1]4

= [a1a2 · · · ak]4 · [1]4 (assumption)

= [1]4 · [1]4 (induction hypothesis)

= [1]4,

and hence P (k + 1) is true.
In summary, we have shown that

• P (1) is true.
• For all k ≥ 1, P (k)⇒ P (k + 1).

Therefore, the Principle of Induction says that P (n) is true for all n ≥ 1. �

Problem 4. Generalization of Euclid’s Proof of Infinite Primes.

(a) Consider an integer n ∈ Z such that |n| > 1. Prove that if [n]4 = [3]4 then n has a
prime factor p|n such that [p]4 = [3]4. [Hint: You can assume (from the FTA) that n
is a product of primes. By the Division Theorem, every prime number p must satisfy
p = 2, [p]4 = [1]4, or [p]4 = [3]4. Use Problem 3.]

(b) Prove that there are infinitely many positive prime numbers p such that [p]4 = [3]4.
[Hint: Assume that there are only finitely many and call them 3 < p1 < p2 < · · · < pn.
Now consider the number N := 4p1p2 · · · pn + 3. Since [N ]4 = [3]4, part (a) says that
there exists a prime p|N such that [p]4 = [3]4. Show that this leads to a contradiction.]



Proof. For part (a), consider n ∈ Z such that |n| > 1 and [n]4 = [3]4. The Fundamental
Theorem of Arithmetic says that n = p1p2 · · · pk for some primes p1, p2, . . . , pk. We want to
prove that there exists i ∈ {1, 2, . . . , k} such that [pi]4 = [3]4. Note that [n]4 = [3]4 implies
that n is odd, so none of its prime factors is 2. This means that for each i ∈ {1, 2, . . . , k} we
have either [pi]4 = [1]4 or [pi]4 = [3]4. Assume for contradiction that we have [pi]4 = [1]4 for
all i ∈ {1, 2, . . . , k}. Then by Problem 3 we conclude that

[n]4 = [p1p2 · · · pk]4 = [1]4,

which contradicts the fact that [n]4 = [3]4. We conclude that there exists i ∈ {1, 2, . . . , k}
such that [pi]4 = [3]4, as desired.

For part (b), assume for contradiction that there exist only finitely many primes p such
that [p]4 = [3]4. Let’s name them:

3 < p1 < p2 < p3 < · · · < pn.

[So we have p1 = 7, p2 = 11, p3 = 19, p4 = 23, etc. The key assumption is that this list stops
at some point.] Now, following Euclid’s famous trick, we will define the integer

N := 4p1p2 · · · pn + 3.

Since [N ]4 = [3]4, part (a) implies that there exists a prime p such that p|N and [p]4 =
[3]4. Since p is a prime of the form [3]4 it must be in our list. That is, we must have
p ∈ {3, p1, p2, . . . , pn}. I claim that p 6= 3. Indeed, if p = 3 then we have 3|N and hence

3|(N − 3) = 4p1p2 · · · pn.
By Euclid’s Lemma this implies that 3|4, which is false, or 3|pi for some i ∈ {1, 2, . . . , n},
which is also false because each pi is a prime number not equal to 3. /// Therefore we must
have p = pi for some i ∈ {1, 2, . . . , n}. Since p|N this implies that pi|N . But we also know
that pi|4p1p2 · · · pn, and hence

pi|(N − 4p1p2 · · · pn) = 3.

But this is a contradiction because 3 < pi.
We conclude that our original assumption — that there are only finitely many primes p

such that [p]4 = [3]4 — is false. �

[Remark: It is also true that there exist infinitely many primes p such that [p]4 = [1]4 but this is
quite a bit harder to prove. Give it a try if you want a challenge. More generally, if we fix a, n ∈ Z
such that gcd(a, n) = 1 then there exist infinitely many primes p such that [p]n = [a]n. This
famous theorem was proved by Gustav Lejeune Dirichlet in 1837. His proof uses complex analysis
and is way beyond the scope of this course. Number theory is full of problems that are easy to
state but hard/impossible to prove.]


