
Math 230 D Fall 2015
Homework 5 Drew Armstrong

Problem 1. Multiplicative Cancellation in Z. Many times we’ve used the fact that the
integers have multiplicative cancellation, but we never proved it. Let’s prove it now.

(a) Prove that for all integers a, b ∈ Z we have

(ab = 0)⇒ (a = 0 or b = 0).

[Hint: You can assume the following two facts: (1) For all x, y, z ∈ Z, (x < y and 0 <
z) ⇒ (xz < yz). (2) For all x, y, z,∈ Z, (x < y and z < 0) ⇒ (yz < xz). Now there
are four cases.]

(b) Use the result of part (a) to prove that for all integers a, b, c ∈ Z we have

(ab = ac and a 6= 0)⇒ (b = c).

Problem 2. Multiplicative Cancellation in Z/n. Fix a nonzero integer n ∈ Z and
consider the following set of abstract symbols

Z/n := {[a]n : a ∈ Z}.
We define “equality” of symbols by ([a]n = [b]n)⇔ (n|(a− b)) (we proved in class that this is
an equivalence relation), “addition” of symbols by [a]n + [b]n := [a + b]n and “multiplication”
of symbols by [a]n · [b]n := [ab]n.

(a) Prove that addition and multiplication of symbols is well-defined. That is, if [a]n = [b]n
and [c]n = [d]n prove that we must have [a]n+[c]n = [b]n+[d]n and [a]n ·[c]n = [b]n ·[d]n.

(b) One can check (but please don’t) that Z/n satisfies the first eight axioms of Z with
additive identity element [0]n ∈ Z/n and multiplicative identity element [1]n ∈ Z/n.
Prove that the element [a]n ∈ Zn has a multiplicative inverse if and only if gcd(a, n) = 1.
[Hint: Recall that (gcd(a, n) = 1)⇔ (∃x, y ∈ Z, ax + ny = 1).]

(c) Additive cancellation in Z/n works exactly as in Z, but multiplicative cancellation is
more complicated. Prove that the following statement is true for all [b]n, [c]n ∈ Z/n if
and only if gcd(a, n) = 1:

([a]n · [b]n = [a]n · [c]n)⇒ ([b]n = [c]n).

Problem 3. Induction Practice. Use induction to prove that for all integers n ≥ 1 the
following statement holds:

“For any n integers a1, a2, . . . , an ∈ Z such that [ai]4 = [1]4 for all i ∈ {1, 2, . . . , n},
it follows that [a1a2 · · · an]4 = [1]4.”

[Hint: Call the statement P (n). Verify that P (1) is true. Now fix an integer k ≥ 1 and
assume for induction that P (k) is true. In this case, prove that P (k + 1) is also true.]

Problem 4. Generalization of Euclid’s Proof of Infinite Primes.

(a) Consider an integer n ∈ Z such that |n| > 1. Prove that if [n]4 = [3]4 then n has a
prime factor p|n such that [p]4 = [3]4. [Hint: You can assume (from the FTA) that n
is a product of primes. By the Division Theorem, every prime number p must satisfy
p = 2, [p]4 = [1]4, or [p]4 = [3]4. Use Problem 3.]

(b) Prove that there are infinitely many positive prime numbers p such that [p]4 = [3]4.
[Hint: Assume that there are only finitely many and call them 3 < p1 < p2 < · · · < pn.
Now consider the number N := 4p1p2 · · · pn + 3. Since [N ]4 = [3]4, part (a) says that
there exists a prime p|N such that [p]4 = [3]4. Show that this leads to a contradiction.]


