Problem 1. Multiplicative Cancellation in \mathbb{Z}. Many times we've used the fact that the integers have multiplicative cancellation, but we never proved it. Let's prove it now.
(a) Prove that for all integers $a, b \in \mathbb{Z}$ we have

$$
(a b=0) \Rightarrow(a=0 \text { or } b=0) .
$$

[Hint: You can assume the following two facts: (1) For all $x, y, z \in \mathbb{Z},(x<y$ and $0<$ $z) \Rightarrow(x z<y z)$. (2) For all $x, y, z, \in \mathbb{Z},(x<y$ and $z<0) \Rightarrow(y z<x z)$. Now there are four cases.]
(b) Use the result of part (a) to prove that for all integers $a, b, c \in \mathbb{Z}$ we have

$$
(a b=a c \text { and } a \neq 0) \Rightarrow(b=c) .
$$

Problem 2. Multiplicative Cancellation in \mathbb{Z} / n. Fix a nonzero integer $n \in \mathbb{Z}$ and consider the following set of abstract symbols

$$
\mathbb{Z} / n:=\left\{[a]_{n}: a \in \mathbb{Z}\right\} .
$$

We define "equality" of symbols by $\left([a]_{n}=[b]_{n}\right) \Leftrightarrow(n \mid(a-b))$ (we proved in class that this is an equivalence relation), "addition" of symbols by $[a]_{n}+[b]_{n}:=[a+b]_{n}$ and "multiplication" of symbols by $[a]_{n} \cdot[b]_{n}:=[a b]_{n}$.
(a) Prove that addition and multiplication of symbols is well-defined. That is, if $[a]_{n}=[b]_{n}$ and $[c]_{n}=[d]_{n}$ prove that we must have $[a]_{n}+[c]_{n}=[b]_{n}+[d]_{n}$ and $[a]_{n} \cdot[c]_{n}=[b]_{n} \cdot[d]_{n}$.
(b) One can check (but please don't) that \mathbb{Z} / n satisfies the first eight axioms of \mathbb{Z} with additive identity element $[0]_{n} \in \mathbb{Z} / n$ and multiplicative identity element $[1]_{n} \in \mathbb{Z} / n$. Prove that the element $[a]_{n} \in \mathbb{Z}_{n}$ has a multiplicative inverse if and only if $\operatorname{gcd}(a, n)=1$. [Hint: Recall that $(\operatorname{gcd}(a, n)=1) \Leftrightarrow(\exists x, y \in \mathbb{Z}, a x+n y=1)$.]
(c) Additive cancellation in \mathbb{Z} / n works exactly as in \mathbb{Z}, but multiplicative cancellation is more complicated. Prove that the following statement is true for all $[b]_{n},[c]_{n} \in \mathbb{Z} / n$ if and only if $\operatorname{gcd}(a, n)=1$:

$$
\left([a]_{n} \cdot[b]_{n}=[a]_{n} \cdot[c]_{n}\right) \Rightarrow\left([b]_{n}=[c]_{n}\right) .
$$

Problem 3. Induction Practice. Use induction to prove that for all integers $n \geq 1$ the following statement holds:
"For any n integers $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ such that $\left[a_{i}\right]_{4}=[1]_{4}$ for all $i \in\{1,2, \ldots, n\}$, it follows that $\left[a_{1} a_{2} \cdots a_{n}\right]_{4}=[1]_{4}$."
[Hint: Call the statement $P(n)$. Verify that $P(1)$ is true. Now fix an integer $k \geq 1$ and assume for induction that $P(k)$ is true. In this case, prove that $P(k+1)$ is also true.]

Problem 4. Generalization of Euclid's Proof of Infinite Primes.
(a) Consider an integer $n \in \mathbb{Z}$ such that $|n|>1$. Prove that if $[n]_{4}=[3]_{4}$ then n has a prime factor $p \mid n$ such that $[p]_{4}=[3]_{4}$. [Hint: You can assume (from the FTA) that n is a product of primes. By the Division Theorem, every prime number p must satisfy $p=2,[p]_{4}=[1]_{4}$, or $[p]_{4}=[3]_{4}$. Use Problem 3.]
(b) Prove that there are infinitely many positive prime numbers p such that $[p]_{4}=[3]_{4}$. [Hint: Assume that there are only finitely many and call them $3<p_{1}<p_{2}<\cdots<p_{n}$. Now consider the number $N:=4 p_{1} p_{2} \cdots p_{n}+3$. Since $[N]_{4}=[3]_{4}$, part (a) says that there exists a prime $p \mid N$ such that $[p]_{4}=[3]_{4}$. Show that this leads to a contradiction.]

