Problem 1. Multiplicative Cancellation in \mathbb{Z} . Many times we've used the fact that the integers have multiplicative cancellation, but we never proved it. Let's prove it now.

(a) Prove that for all integers $a, b \in \mathbb{Z}$ we have

$$(ab = 0) \Rightarrow (a = 0 \text{ or } b = 0).$$

[Hint: You can assume the following two facts: (1) For all $x, y, z \in \mathbb{Z}$, $(x < y \text{ and } 0 < z) \Rightarrow (xz < yz)$. (2) For all $x, y, z, \in \mathbb{Z}$, $(x < y \text{ and } z < 0) \Rightarrow (yz < xz)$. Now there are four cases.]

(b) Use the result of part (a) to prove that for all integers $a, b, c \in \mathbb{Z}$ we have

 $(ab = ac \text{ and } a \neq 0) \Rightarrow (b = c).$

Problem 2. Multiplicative Cancellation in \mathbb{Z}/n . Fix a nonzero integer $n \in \mathbb{Z}$ and consider the following set of abstract symbols

$$\mathbb{Z}/n := \{ [a]_n : a \in \mathbb{Z} \}$$

We define "equality" of symbols by $([a]_n = [b]_n) \Leftrightarrow (n|(a-b))$ (we proved in class that this is an equivalence relation), "addition" of symbols by $[a]_n + [b]_n := [a+b]_n$ and "multiplication" of symbols by $[a]_n \cdot [b]_n := [ab]_n$.

- (a) Prove that addition and multiplication of symbols is well-defined. That is, if $[a]_n = [b]_n$ and $[c]_n = [d]_n$ prove that we must have $[a]_n + [c]_n = [b]_n + [d]_n$ and $[a]_n \cdot [c]_n = [b]_n \cdot [d]_n$.
- (b) One can check (but please don't) that \mathbb{Z}/n satisfies the first eight axioms of \mathbb{Z} with additive identity element $[0]_n \in \mathbb{Z}/n$ and multiplicative identity element $[1]_n \in \mathbb{Z}/n$. Prove that the element $[a]_n \in \mathbb{Z}_n$ has a multiplicative inverse if and only if gcd(a, n) = 1. [Hint: Recall that $(gcd(a, n) = 1) \Leftrightarrow (\exists x, y \in \mathbb{Z}, ax + ny = 1)$.]
- (c) Additive cancellation in \mathbb{Z}/n works exactly as in \mathbb{Z} , but multiplicative cancellation is more complicated. Prove that the following statement is true for all $[b]_n, [c]_n \in \mathbb{Z}/n$ if and only if gcd(a, n) = 1:

$$([a]_n \cdot [b]_n = [a]_n \cdot [c]_n) \Rightarrow ([b]_n = [c]_n).$$

Problem 3. Induction Practice. Use induction to prove that for all integers $n \ge 1$ the following statement holds:

"For any *n* integers $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ such that $[a_i]_4 = [1]_4$ for all $i \in \{1, 2, \ldots, n\}$, it follows that $[a_1a_2\cdots a_n]_4 = [1]_4$."

[Hint: Call the statement P(n). Verify that P(1) is true. Now fix an integer $k \ge 1$ and assume for induction that P(k) is true. In this case, prove that P(k+1) is also true.]

Problem 4. Generalization of Euclid's Proof of Infinite Primes.

- (a) Consider an integer $n \in \mathbb{Z}$ such that |n| > 1. Prove that if $[n]_4 = [3]_4$ then n has a prime factor p|n such that $[p]_4 = [3]_4$. [Hint: You can assume (from the FTA) that n is a product of primes. By the Division Theorem, every prime number p must satisfy p = 2, $[p]_4 = [1]_4$, or $[p]_4 = [3]_4$. Use Problem 3.]
- (b) Prove that there are infinitely many positive prime numbers p such that $[p]_4 = [3]_4$. [Hint: Assume that there are only **finitely many** and call them $3 < p_1 < p_2 < \cdots < p_n$. Now consider the number $N := 4p_1p_2 \cdots p_n + 3$. Since $[N]_4 = [3]_4$, part (a) says that there exists a prime p|N such that $[p]_4 = [3]_4$. Show that this leads to a contradiction.]