
Math 230 D Fall 2015
Homework 4 Drew Armstrong

Problem 1. Rational Numbers. We have used the rational numbers a lot but we never
defined them. Now we will. For all integers a, b ∈ Z with b 6= 0 we define an abstract symbol
[a, b]. Let Q be the set of all these symbols:

Q := {[a, b] : a, b ∈ Z with b 6= 0} .

We will “multiply” and “add” abstract symbols as follows:

[a, b] · [c, d] = [ac, bd] and [a, b] + [c, d] = [ad + bc, bd] .

Finally, we declare that [a, b] = [c, d] if and only if ad = bc.

(a) Prove that the sum and product of abstract symbols is well-defined. That is, if [a1, b1] =
[a2, b2] and [c1, d1] = [c2, d2], prove that we have

[a1, b1] · [c1, d1] = [a2, b2] · [c2, d2] and [a1, b1] + [c1, d1] = [a2, b2] + [c2, d2] .

(b) One can check that Q satisfies all of the axioms of Z except for the Well-Ordering
Axiom (please don’t check this), with additive identity [0, 1] ∈ Q and multiplicative
identity [1, 1] ∈ Q. But Q has one crucial advantage over Z: Prove that every nonzero
element of Q has a multiplicative inverse.

Proof. For part (a), assume that we have [a1, b1], [a2, b2], [c1, d1], [c2, d2] ∈ Q such that [a1, b1] =
[a2, b2] and [c1, d1] = [c2, d2]. In other words, we have integers a1, a2, b1, b2, c1, c2, d1, d2 ∈ Z
with b1, b2, d1, d2 6= 0, such that a1b2 = a2b1 and c1d2 = c2d1. In this case we want to prove
that

(1) [a1, b1] · [c1, d1] = [a2, b2] · [c2, d2], and
(2) [a1, b1] + [c1, d1] = [a2, b2] + [c2, d2].

To prove (1), note that we are being asked to show that [a1c1, b1d1] = [a2c2, b2d2]; in other
words, that (a1c1)(b2d2) = (a2c2)(b1d1). And this is certainly true because

(a1c1)(b2d2) = (a1b2)(c1d2)

= (a2b1)(c2d1)

= (a2c2)(b1d1).

To prove (2), note that we are being asked to show that [a1d1 + b1c1, b1d1] = [a2d2 +
b2c2, b2d2]; in other words, that (a1d1 +b1c1)(b2d2) = (a2d2 +b2c2)(b1d1). And this is certainly
true because

(a1d1 + b1c1)(b2d2) = (a1d1)(b2d2) + (b1c1)(b2d2)

= (a1b2)(d1d2) + (c1d2)(b1b2)

= (a2b1)(d1d2) + (c2d1)(b1b2)

= (a2d2)(b1d1) + (b2c2)(b1d1)

= (a2d2 + b2c2)(b1d1).

For part (b), consider any [a, b] ∈ Q such that [a, b] 6= [0, 1]. In other words, consider any
two integers a, b ∈ Z with b 6= 0 such that a1 6= b0, i.e., a 6= 0. In this case we want to
prove that there exists an element [c, d] ∈ Q such that [a, b] · [c, d] = [1, 1], i.e., [ac, bd] = [1, 1].
In other words, we want to prove that there exist integers c, d ∈ Z with d 6= 0 such that



ac1 = bd1, i.e., ac = bd. Well, when you put it that way it’s pretty easy: Since a 6= 0 we can
just choose c = b and d = a. Then we have ac = ab = ba = ba. The end. �

[Remark: That looked like a lot of abstract nonsense, but actually we are verifying that fractions
work the way you always thought they did. Part (a) shows that show that if you reduce two
fractions and then add/multiply them, then you get the same thing as when you add/multiply
them and then reduce the result. You use this all the time, of course, but maybe you never
realized that it needs to be proved. Part (b) says that to divide by a fraction you should multiply
by the reciprocal fraction. Both parts are easy to prove once you know what’s being asked. The
hard part is to figure out what is being asked.]

Problem 2. Generalizations of Euclid’s Lemma.

(a) Let a, b, d ∈ Z. Prove that if d|ab and gcd(a, d) = 1 then we have d|b. [Hint: Since
gcd(a, d) = 1 there exist x, y ∈ Z such that ax + dy = 1.]

(b) Consider a1, a2, . . . , an, p ∈ Z with p prime. Prove that if p|(a1a2 · · · an) then there
exists 1 ≤ i ≤ n such that p|ai. [Hint: Use induction or well-ordering. You can assume
that the result is true when n = 2 (it follows from part (a)).]

Proof. For part (a), consider a, b, d ∈ Z with d|ab, say ab = dk, and gcd(a, d) = 1. Since
gcd(a, d) = 1, Bézout’s Identity says that there exist x, y ∈ Z such that ax + dy = 1. Then
multiplying both sides of this equation by b gives

ax + dy = 1

(ax + dy)b = b

abx + dby = b

dkx + dby = b

d(kx + by) = b,

and hence d|b as desired.
For part (b), let p ∈ Z be prime. For all n ∈ N we define the statement P (n) = “If

p|a1a2 · · · an for some integers a1, a2, . . . , an then there exists i ∈ {1, 2, . . . , n} such that p|ai.”
We want to prove that P (n) = T for all n ∈ N. First note that P (1) = “If p|a1 then p|a1”
is trivially true, and that P (2) = “If p|a1a2 then p|a1 or p|a2” is Euclid’s Lemma, which we
proved in class.

Now assume for contradiction that there exists some n ∈ N such that P (n) = F . Then
by Well-Ordering there exists a smallest such number, which we will call m. Since P (1) =
P (2) = T we have m ≥ 3. We also know that P (m−1) = T by the minimality of m. To finish
the proof we will show that P (m − 1) = T implies P (m) = T , which will contradict the fact
that P (m) = F .

So consider any m integers a1, a2, . . . , am ∈ Z and suppose that p|a1a2 · · · am. Using paren-
theses creatively gives p|(a1 · · · am−1)am, and since P (2) = T this implies that p|a1 · · · am−1 or
p|am. If p|am then we are done, so suppose that p 6 |am. Then we have p|a1 · · · am−1 and since
P (m− 1) = T this implies that there exists i ∈ {1, 2, . . . ,m− 1} such that p|ai. We conclude
that P (m) = T . Contradiction.

Since our original assumption (that there exists n ∈ N with P (n) = F ) is false, we conclude
that P (n) = T for all n ∈ N. �

[Remark: We will have much more practice with induction and well-ordering after Exam2.]



Problem 3. Linear Diophantine Equations I. Consider a, b ∈ Z, not both zero.

(a) Suppose that d = gcd(a, b) with a = da′ and b = db′. Prove that gcd(a′, b′) = 1
(b) Use part (a) and Problem 2(a) to find all integer solutions x, y ∈ Z to the equation

ax + by = 0.

Proof. For part (a), let d = gcd(a, b) with a = da′ and b = db′. By Bézout’s Identity there
exist x, y ∈ Z such that ax + by = d, and then canceling d from both sides gives

ax + by = d

da′x + db′y = d

d(a′x + db′y) = d

a′x + b′y = 1.

I claim that this last equation implies gcd(a′, b′) = 1. Indeed, suppose that e is any common
divisor of a′ and b′, with a′ = ea′′ and b′ = eb′′. Then we have

a′x + b′y = 1

ea′′x + eb′′y = 1

e(a′′x + b′′y) = 1,

hence e|1. Since 1 6= 0 this implies that e ≤ |e| ≤ |1| = 1. Since every common divisor e of a′

and b′ satisfies e ≤ 1 we conclude that 1 is the greatest common divisor.
For part (b), consider a, b, d ∈ Z as in part (a). We are looking for all integers x, y ∈ Z such

that ax + by = 0. By canceling d from both sides of this equation note that we have

ax + by = 0 ⇐⇒ a′x + b′y = 0.

Now let x, y ∈ Z be a solution to the equation on the right. Then

a′x + b′y = 0

a′x = −b′y

implies that a′|b′y and b′|a′x. Since we have gcd(a′, b′) = 1 [from part (a)], Problem 2(a)
implies that a′|y and b′|x, say y = a′k and x = b′` for some k, ` ∈ Z. Plugging these back into
the equation gives

a′x = −b′y
a′(b′`) = −b′(a′k)

` = −k.

We conclude that every solution to a′x + b′y = 0 has the form (x, y) = (−b′k, a′k) for some
k ∈ Z. Since every (x, y) of this form is a solution, we conclude that this is the complete
solution. �

Problem 4. Linear Diophantine Equations II. Let a, b, c ∈ Z be integers, where a and b
are not both zero. We are interested in finding all integer solutions x, y ∈ Z to the equation
ax + by = c. Consider the set of solutions

Vc := {(x, y) : ax + by = c}.

(a) If gcd(a, b) does not divide c, prove that Vc = ∅.



(b) If ax′ + by′ = c is one particular solution, prove that

Vc = ((x′, y′) + V0) := {(x′ + x, y′ + y) : ax + by = 0}.
[Hint: You have to show Vc ⊆ ((x′, y′) + V0) and ((x′, y′) + V0) ⊆ Vc separately.]

(c) Let d = gcd(a, b). Suppose that c = dc′ and suppose that ax′+by′ = c. Use everything
you have learned to find all integer solutions x, y ∈ Z to the equation ax + by = c.
[Hint: You know what V0 is from Problem 3. Now use part (b).]

Proof. For part (a), consider a, b, c, d ∈ Z with d = gcd(a, b), say a = da′ and b = db′. We will
prove the (equivalent) contrapositive statement: Vc 6= ∅ =⇒ d|c. So assume that Vc 6= ∅ so
there exist some x, y ∈ Z with ax + by = c. Then we have

c = ax + by = da′x + db′y = d(a′x + b′y),

hence d|c.
For part (b) consider x′, y′ ∈ Z such that ax′ + by′ = c. First we will show that Vc ⊆

((x′, y′) + V0). So suppose that we have (u, v) ∈ Vc; that is, suppose that au + bv = c. If we
define x = u− x′ and y = v − y′ then we have

ax + by = a(u− x′) + b(v − y′)

= (au + bv)− (ax′ + by′)

= c− c

= 0.

We conclude that (x, y) ∈ V0 and hence (u, v) = (x′ + x, y′ + y) is in ((x′, y′) + V0) as desired.
Next we will show that ((x′, y′)+V0) ⊆ Vc. So consider any (u, v) ∈ ((x′, y′)+V0). This means
that u = x′ + x and v = y′ + y for some x, y such that ax + by = 0. Then we have

au + bv = a(x′ + x) + b(y′ + y)

= (ax′ + by′) + (ax + by)

= c + 0

= c,

and hence (u, v) ∈ Vc as desired.
For part (c), let d = gcd(a, b) with a = da′ and b = db′. We want to find all elements of

the set Vc. Suppose that (x′, y′) ∈ Vc is one particular element. Then from part (b) we have
Vc = ((x′, y′) + V0) so it suffices to find all elements (x, y) of the set V0. By Problem 3(b) we
know that

V0 = {(−b′k, a′k) : k ∈ Z},
and it follows that

Vc = {(x′ − b′k, y′ + a′k) : k ∈ Z}.
�

[Remark: In practice you will use the Extended Euclidean Algorithm to find one particular solution
(x′, y′) ∈ Vc. Then the complete solution follows easily.]


