Problem 1. Rational Numbers. We have used the rational numbers a lot but we never defined them. Now we will. For all integers $a, b \in \mathbb{Z}$ with $b \neq 0$ we define an abstract symbol $[a, b]$. Let \mathbb{Q} be the set of all these symbols:

$$
\mathbb{Q}:=\{[a, b]: a, b \in \mathbb{Z} \text { with } b \neq 0\} .
$$

We will "multiply" and "add" abstract symbols as follows:

$$
[a, b] \cdot[c, d]=[a c, b d] \quad \text { and } \quad[a, b]+[c, d]=[a d+b c, b d] .
$$

Finally, we declare that $[a, b]=[c, d]$ if and only if $a d=b c$.
(a) Prove that the sum and product of abstract symbols is well-defined. That is, if $\left[a_{1}, b_{1}\right]=$ [$\left.a_{2}, b_{2}\right]$ and $\left[c_{1}, d_{1}\right]=\left[c_{2}, d_{2}\right]$, prove that we have

$$
\left[a_{1}, b_{1}\right] \cdot\left[c_{1}, d_{1}\right]=\left[a_{2}, b_{2}\right] \cdot\left[c_{2}, d_{2}\right] \quad \text { and } \quad\left[a_{1}, b_{1}\right]+\left[c_{1}, d_{1}\right]=\left[a_{2}, b_{2}\right]+\left[c_{2}, d_{2}\right] .
$$

(b) One can check that \mathbb{Q} satisfies all of the axioms of \mathbb{Z} except for the Well-Ordering Axiom (please don't check this), with additive identity $[0,1] \in \mathbb{Q}$ and multiplicative identity $[1,1] \in \mathbb{Q}$. But \mathbb{Q} has one crucial advantage over \mathbb{Z} : Prove that every nonzero element of \mathbb{Q} has a multiplicative inverse.

Problem 2. Generalizations of Euclid's Lemma.

(a) Let $a, b, d \in \mathbb{Z}$. Prove that if $d \mid a b$ and $\operatorname{gcd}(a, d)=1$ then we have $d \mid b$. [Hint: Since $\operatorname{gcd}(a, d)=1$ there exist $x, y \in \mathbb{Z}$ such that $a x+d y=1$.]
(b) Consider $a_{1}, a_{2}, \ldots, a_{n}, p \in \mathbb{Z}$ with p prime. Prove that if $p \mid\left(a_{1} a_{2} \cdots a_{n}\right)$ then there exists $1 \leq i \leq n$ such that $p \mid a_{i}$. [Hint: Use induction or well-ordering. You can assume that the result is true when $n=2$ (it follows from part (a)).]

Problem 3. Linear Diophantine Equations I. Consider $a, b \in \mathbb{Z}$, not both zero.
(a) Suppose that $d=\operatorname{gcd}(a, b)$ with $a=d a^{\prime}$ and $b=d b^{\prime}$. Prove that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$
(b) Use part (a) and Problem 2(a) to find all integer solutions $x, y \in \mathbb{Z}$ to the equation $a x+b y=0$.

Problem 4. Linear Diophantine Equations II. Let $a, b, c \in \mathbb{Z}$ be integers, where a and b are not both zero. We are interested in finding all integer solutions $x, y \in \mathbb{Z}$ to the equation $a x+b y=c$. Consider the set of solutions

$$
V_{c}:=\{(x, y): a x+b y=c\} .
$$

(a) If $\operatorname{gcd}(a, b)$ does not divide c, prove that $V_{c}=\emptyset$.
(b) If $a x^{\prime}+b y^{\prime}=c$ is one particular solution, prove that

$$
V_{c}=\left(\left(x^{\prime}, y^{\prime}\right)+V_{0}\right):=\left\{\left(x^{\prime}+x, y^{\prime}+y\right): a x+b y=0\right\} .
$$

[Hint: You have to show $V_{c} \subseteq\left(\left(x^{\prime}, y^{\prime}\right)+V_{0}\right)$ and $\left(\left(x^{\prime}, y^{\prime}\right)+V_{0}\right) \subseteq V_{c}$ separately.]
(c) Let $d=\operatorname{gcd}(a, b)$. Suppose that $c=d c^{\prime}$ and suppose that $a x^{\prime}+b y^{\prime}=c$. Use everything you have learned to find all integer solutions $x, y \in \mathbb{Z}$ to the equation $a x+b y=c$. [Hint: You know what V_{0} is from Problem 3. Now use part (b).]

