Problem 1. How do – and × interact? For the following exercises I want you to give Euclidean style proofs using the axioms of \mathbb{Z} from the handout. You can also use the results we proved in class, such as: uniqueness of "-a", 0a = 0 for all $a \in \mathbb{Z}$, and the Cancellation Lemma $(a + b = a + c) \Rightarrow (b = c)$.

- (a) Recall that -n is the **unique** integer satisfying n + (-n) = 0. Prove that for all $n \in \mathbb{Z}$ we have -(-n) = n.
- (b) Prove that for all $a, b \in \mathbb{Z}$ we have (-a)b = a(-b) = -(ab). [Hint: Use the fact that 0a = 0 for all $a \in \mathbb{Z}$, which we proved in class.]
- (c) Recall that for all $m, n \in \mathbb{Z}$ we define m n := m + (-n). Prove that for all $a, b, c \in \mathbb{Z}$ we have a(b-c) = ab ac. [Hint: Use (b).]
- (d) Prove that for all $a, b \in \mathbb{Z}$ we have (-a)(-b) = ab. [Hint: Use parts (a) and (b).]

Proof. For part (a) consider any $n \in \mathbb{Z}$ and note that n + (-n) = 0 by definition. On the other hand, we have (-n) + (-(-n)) = 0 by definition. Combining the two equations gives (-n) + (-(-n)) = (-n) + n, and then we can cancel (-n) from both sides (using the Cancellation Lemma) to get -(-n) = n.

For part (b) consider any $a, b \in \mathbb{Z}$. Then we have

$$ab + a(-b) = a(b + (-b))$$

$$= a0$$

$$= 0$$
(D)
(A4)
(A4)

In other words, a(-b) is an additive inverse of ab. By the uniqueness of additive inverses (proved in class), we have a(-b) = -(ab). Similarly, we have

$$ab + (-a)b = (a + (-a))b$$
 (D)

$$= 0b \tag{A4}$$

which implies that (-a)b = -(ab).

For part (c), consider any $a, b, c \in \mathbb{Z}$. Then we have

= 0

$$a(b-c) = a(b + (-c))$$
 by definition
$$= ab + a(-c)$$
 (D)
$$= ab + (-(ac))$$
 by part (b)
$$= ab - ac$$
 by definition.

For part (d), consider any $a, b \in \mathbb{Z}$. Then we have

$$(-a)(-b) = -(a(-b))$$
 by part (b)
$$= -(-(ab))$$
 by part (b)
$$= ab$$
 by part (a).

Problem 2. First Look at Induction.

- (a) Prove that 3^n is an odd number for all natural numbers $n \in \mathbb{N}$. [Hint: Assume for contradiction that there exists a natural number such that 3^n is even. In this case, the Well-Ordering Axiom tells us that there is a smallest such integer. Call it $m \in \mathbb{N}$. Now try to find a contradiction.]
- (b) Assume that there exists a real number $x \in \mathbb{R}$ such that $2^x = 3$ (we call it $x = \log_2(3)$). Use part (a) to prove that $x \notin \mathbb{Q}$.

Proof. For part (a), let $S = \{n \in \mathbb{N} : 3^n \text{ is even}\}$. We wish to show that S is the empty set. To show this, assume for contradiction that S is **not** empty. Then the Well-Ordering Axiom says that there exists a smallest element, say $m \in S$. We know that $3^1 = 3$ is odd, so that $1 \notin S$, and hence 1 < m. Now consider the natural number $m - 1 \in \mathbb{N}$. Since m is the smallest element of S we must have $m - 1 \notin S$, and hence 3^{m-1} is odd. But then $3^m = 3 \cdot 3^{m-1}$, being the product of two odd numbers, is odd. This contradicts the fact that $m \in S$. We conclude that S is the empty set; in other words, 3^n is odd for all $n \in \mathbb{N}$.

For part (b), let $x = \log_2(3)$ and assume for contradiction that x = m/n for some integers $m, n \in \mathbb{Z}$ with $n \in \mathbb{N}$. By definition we have

$$2^{x} = 3$$
$$2^{m/n} = 3$$
$$(2^{m/n})^{n} = 3^{n}$$
$$2^{m} = 3^{n}$$

Since $n \in \mathbb{N}$ we know from part (a) that 3^n is an odd number. But since $2^m = 3^n > 1$ we know that $m \ge 1$ and hence $2^m = 2 \cdot 2^{m-1}$ is even. Contradiction.

Problem 3. Square root of $a \in \mathbb{Z}$.

(a) Suppose that $\alpha \in \mathbb{R}$ and $\alpha \notin \mathbb{Z}$. In this case, use the Well-Ordering Axiom to prove that there exists an integer $b \in \mathbb{Z}$ such that

$$b < \alpha < b + 1$$
.

[Hint: Let $S = \{n \in \mathbb{Z} : \alpha < n\}$. Since this set is nonempty and bounded below, the Well-Ordering Axiom says it has a least element, say $m \in S$.]

(b) Prove that for all $a \in \mathbb{Z}$ we have

$$\sqrt{a} \notin \mathbb{Z} \Longrightarrow \sqrt{a} \notin \mathbb{Q}.$$

[Hint: Assume that $\sqrt{a} \notin \mathbb{Z}$, so we have $b < \sqrt{a} < b + 1$ for some $b \in \mathbb{Z}$ by part (a). Now assume for contradiction that $\sqrt{a} \in \mathbb{Q}$. Consider the set $T = \{n \in \mathbb{N} : n\sqrt{a} \in \mathbb{Z}\}$. Show that T is not empty, so by Well-Ordering it has a smallest element, say $m \in T$. Now show that $m(\sqrt{a} - b)$ is a **smaller** element of T. Contradiction.]

Proof. For part (a), let $\alpha \in \mathbb{R}$ and $\alpha \notin \mathbb{Z}$. Define the set $S = \{n \in \mathbb{Z} : \alpha < n\}$. By Well-Ordering, this set has a least element, say $m \in S$. Since $m \in S$ we have $\alpha < m$ by definition. And since $m - 1 \notin S$ we have $\alpha \notin m - 1$ by definition. Finally, since $\alpha \neq m - 1$ (because $\alpha \notin \mathbb{Z}$) this implies that $m - 1 < \alpha$. The desired integer is b = m - 1.

For part (b), consider $a \in \mathbb{Z}$ and suppose that $\sqrt{a} \notin \mathbb{Z}$. In this case we want to show that $\sqrt{a} \notin \mathbb{Q}$. To do this, assume for contradiction that $\sqrt{a} \in \mathbb{Q}$, so we can write $\sqrt{a} = p/q$ with $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. Now consider the set $T = \{n \in \mathbb{N} : n\sqrt{a} \in \mathbb{Z}\}$. We know that T is not empty because $q \in \mathbb{N}$ and $q\sqrt{a} = p \in \mathbb{Z}$ imply that $q \in T$. Thus, by Well-Ordering there is a smallest element, say $m \in T$.

Since $\sqrt{a} \notin \mathbb{Z}$ by assumption, part (a) implies that there exists an integer $b \in \mathbb{Z}$ such that $b < \sqrt{a} < b + 1$. Subtracting b and then multiplying by m gives

$$b < \sqrt{a} < b + 1$$

$$0 < \sqrt{a} - b < 1$$

$$0 < m(\sqrt{a} - b) < m$$

If we can show that $m(\sqrt{a} - b) \in T$ then this will be the desired contradiction, because *m* is supposed to be the **smallest** element of *T*. To show that $m(\sqrt{a} - b) \in T$ first note that since $m\sqrt{a} \in \mathbb{Z}$ and $mb \in \mathbb{Z}$ we have

$$m(\sqrt{a}-b) = m\sqrt{a} - mb \in \mathbb{Z}$$

and since $0 < m(\sqrt{a} - b)$ this implies that $m(\sqrt{a} - b) \in \mathbb{N}$. Finally, we have

$$m(\sqrt{a}-b)\sqrt{a} = ma - b(m\sqrt{a}) \in \mathbb{Z},$$

and hence $m(\sqrt{a} - b) \in T$ as desired.

Problem 4. Greatest Common Divisor. Consider two integers $a, b \in \mathbb{Z}$ that are not both zero. Now consider the set of "common divisors"

$$D = \{ d \in \mathbb{Z} : d | a \wedge d | b \}.$$

Show that this set is bounded above, so by Well-Ordering it has a largest element. Call the largest element gcd(a, b). Now show that $1 \leq gcd(a, b)$. [Hint: Use Problem 3(d) from HW2.]

Proof. Recall from HW2 Problem 3(d) that for $x, y \in \mathbb{Z}$ with $y \neq 0$ we have $x|y \Rightarrow |x| \leq |y|$. Now consider integers $a, b \in \mathbb{Z}$ not both zero and define ther set of common divisors $D = \{d \in \mathbb{Z} : d|a \land d|b\}$. Without loss of generality, let's assume that $a \neq 0$ (otherwise we can switch the names of a and b and the argument will be the same). Then for all $d \in D$ we have d|a and $a \neq 0$, hence $d \leq |d| \leq |a|$ by the above the remark. Since the set D is bounded above (by |a|), it follows from Well-Ordering that D has greatest element. We will denote this element by $gcd(a, b) \in D$, and call it the "greatest common divisor" of a and b.

Finally, note that 1|a and 1|b, so that $1 \in D$. Since gcd(a, b) is the **greatest** element of D it follows that $1 \leq gcd(a, b)$, as desired.