
Math 230 D Fall 2015
Homework 3 Drew Armstrong

Problem 1. How do − and × interact? For the following exercises I want you to give
Euclidean style proofs using the axioms of Z from the handout. You can also use the results
we proved in class, such as: uniqueness of “−a”, 0a = 0 for all a ∈ Z, and the Cancellation
Lemma (a+ b = a+ c)⇒ (b = c).

(a) Recall that −n is the unique integer satisfying n+ (−n) = 0. Prove that for all n ∈ Z
we have −(−n) = n.

(b) Prove that for all a, b ∈ Z we have (−a)b = a(−b) = −(ab). [Hint: Use the fact that
0a = 0 for all a ∈ Z, which we proved in class.]

(c) Recall that for all m,n ∈ Z we define m−n := m+ (−n). Prove that for all a, b, c ∈ Z
we have a(b− c) = ab− ac. [Hint: Use (b).]

(d) Prove that for all a, b ∈ Z we have (−a)(−b) = ab. [Hint: Use parts (a) and (b).]

Proof. For part (a) consider any n ∈ Z and note that n + (−n) = 0 by definition. On
the other hand, we have (−n) + (−(−n)) = 0 by definition. Combining the two equations
gives (−n) + (−(−n)) = (−n) + n, and then we can cancel (−n) from both sides (using the
Cancellation Lemma) to get −(−n) = n.

For part (b) consider any a, b ∈ Z. Then we have

ab+ a(−b) = a(b+ (−b)) (D)

= a0 (A4)

= 0 from class.

In other words, a(−b) is an additive inverse of ab. By the uniqueness of additive inverses
(proved in class), we have a(−b) = −(ab). Similarly, we have

ab+ (−a)b = (a+ (−a))b (D)

= 0b (A4)

= 0 from class,

which implies that (−a)b = −(ab).
For part (c), consider any a, b, c ∈ Z. Then we have

a(b− c) = a(b+ (−c)) by definition

= ab+ a(−c) (D)

= ab+ (−(ac)) by part (b)

= ab− ac by definition.

For part (d), consider any a, b ∈ Z. Then we have

(−a)(−b) = −(a(−b)) by part (b)

= −(−(ab)) by part (b)

= ab by part (a).
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Problem 2. First Look at Induction.

(a) Prove that 3n is an odd number for all natural numbers n ∈ N. [Hint: Assume for
contradiction that there exists a natural number such that 3n is even. In this case,
the Well-Ordering Axiom tells us that there is a smallest such integer. Call it m ∈ N.
Now try to find a contradiction.]

(b) Assume that there exists a real number x ∈ R such that 2x = 3 (we call it x = log2(3)).
Use part (a) to prove that x 6∈ Q.

Proof. For part (a), let S = {n ∈ N : 3n is even}. We wish to show that S is the empty set.
To show this, assume for contradiction that S is not empty. Then the Well-Ordering Axiom
says that there exists a smallest element, say m ∈ S. We know that 31 = 3 is odd, so that
1 6∈ S, and hence 1 < m. Now consider the natural number m−1 ∈ N. Since m is the smallest
element of S we must have m− 1 6∈ S, and hence 3m−1 is odd. But then 3m = 3 · 3m−1, being
the product of two odd numbers, is odd. This contradicts the fact that m ∈ S. We conclude
that S is the empty set; in other words, 3n is odd for all n ∈ N.

For part (b), let x = log2(3) and assume for contradiction that x = m/n for some integers
m,n ∈ Z with n ∈ N. By definition we have

2x = 3

2m/n = 3

(2m/n)n = 3n

2m = 3n.

Since n ∈ N we know from part (a) that 3n is an odd number. But since 2m = 3n > 1 we
know that m ≥ 1 and hence 2m = 2 · 2m−1 is even. Contradiction. �

Problem 3. Square root of a ∈ Z.
(a) Suppose that α ∈ R and α 6∈ Z. In this case, use the Well-Ordering Axiom to prove

that there exists an integer b ∈ Z such that

b < α < b+ 1.

[Hint: Let S = {n ∈ Z : α < n}. Since this set is nonempty and bounded below, the
Well-Ordering Axiom says it has a least element, say m ∈ S.]

(b) Prove that for all a ∈ Z we have
√
a 6∈ Z =⇒

√
a 6∈ Q.

[Hint: Assume that
√
a 6∈ Z, so we have b <

√
a < b + 1 for some b ∈ Z by part (a).

Now assume for contradiction that
√
a ∈ Q. Consider the set T = {n ∈ N : n

√
a ∈ Z}.

Show that T is not empty, so by Well-Ordering it has a smallest element, say m ∈ T .
Now show that m(

√
a− b) is a smaller element of T . Contradiction.]

Proof. For part (a), let α ∈ R and α 6∈ Z. Define the set S = {n ∈ Z : α < n}. By Well-
Ordering, this set has a least element, say m ∈ S. Since m ∈ S we have α < m by definition.
And since m − 1 6∈ S we have α 6< m − 1 by definition. Finally, since α 6= m − 1 (because
α 6∈ Z) this implies that m− 1 < α. The desired integer is b = m− 1.

For part (b), consider a ∈ Z and suppose that
√
a 6∈ Z. In this case we want to show that√

a 6∈ Q. To do this, assume for contradiction that
√
a ∈ Q, so we can write

√
a = p/q with

p ∈ Z and q ∈ N. Now consider the set T = {n ∈ N : n
√
a ∈ Z}. We know that T is not

empty because q ∈ N and q
√
a = p ∈ Z imply that q ∈ T . Thus, by Well-Ordering there is a

smallest element, say m ∈ T .



Since
√
a 6∈ Z by assumption, part (a) implies that there exists an integer b ∈ Z such that

b <
√
a < b+ 1. Subtracting b and then multiplying by m gives

b <
√
a < b+ 1

0 <
√
a− b < 1

0 < m(
√
a− b) < m.

If we can show that m(
√
a− b) ∈ T then this will be the desired contradiction, because m is

supposed to be the smallest element of T . To show that m(
√
a− b) ∈ T first note that since

m
√
a ∈ Z and mb ∈ Z we have

m(
√
a− b) = m

√
a−mb ∈ Z,

and since 0 < m(
√
a− b) this implies that m(

√
a− b) ∈ N. Finally, we have

m(
√
a− b)

√
a = ma− b(m

√
a) ∈ Z,

and hence m(
√
a− b) ∈ T as desired. �

Problem 4. Greatest Common Divisor. Consider two integers a, b ∈ Z that are not both
zero. Now consider the set of “common divisors”

D = {d ∈ Z : d|a ∧ d|b}.
Show that this set is bounded above, so by Well-Ordering it has a largest element. Call the
largest element gcd(a, b). Now show that 1 ≤ gcd(a, b). [Hint: Use Problem 3(d) from HW2.]

Proof. Recall from HW2 Problem 3(d) that for x, y ∈ Z with y 6= 0 we have x|y ⇒ |x| ≤ |y|.
Now consider integers a, b ∈ Z not both zero and define ther set of common divisors D = {d ∈
Z : d|a ∧ d|b}. Without loss of generality, let’s assume that a 6= 0 (otherwise we can switch
the names of a and b and the argument will be the same). Then for all d ∈ D we have d|a and
a 6= 0, hence d ≤ |d| ≤ |a| by the above the remark. Since the set D is bounded above (by
|a|), it follows from Well-Ordering that D has greatest element. We will denote this element
by gcd(a, b) ∈ D, and call it the “greatest common divisor” of a and b.

Finally, note that 1|a and 1|b, so that 1 ∈ D. Since gcd(a, b) is the greatest element of D
it follows that 1 ≤ gcd(a, b), as desired.
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