Problem 1. How do - and \times interact? For the following exercises I want you to give Euclidean style proofs using the axioms of \mathbb{Z} from the handout. You can also use the results we proved in class, such as: uniqueness of " $-a$ ", $0 a=0$ for all $a \in \mathbb{Z}$, and the Cancellation Lemma $(a+b=a+c) \Rightarrow(b=c)$.
(a) Recall that $-n$ is the unique integer satisfying $n+(-n)=0$. Prove that for all $n \in \mathbb{Z}$ we have $-(-n)=n$.
(b) Prove that for all $a, b \in \mathbb{Z}$ we have $(-a) b=a(-b)=-(a b)$. [Hint: Use the fact that $0 a=0$ for all $a \in \mathbb{Z}$, which we proved in class.]
(c) Recall that for all $m, n \in \mathbb{Z}$ we define $m-n:=m+(-n)$. Prove that for all $a, b, c \in \mathbb{Z}$ we have $a(b-c)=a b-a c$. [Hint: Use (b).]
(d) Prove that for all $a, b \in \mathbb{Z}$ we have $(-a)(-b)=a b$. [Hint: Use parts (a) and (b).]

Proof. For part (a) consider any $n \in \mathbb{Z}$ and note that $n+(-n)=0$ by definition. On the other hand, we have $(-n)+(-(-n))=0$ by definition. Combining the two equations gives $(-n)+(-(-n))=(-n)+n$, and then we can cancel $(-n)$ from both sides (using the Cancellation Lemma) to get $-(-n)=n$.

For part (b) consider any $a, b \in \mathbb{Z}$. Then we have

$$
\begin{align*}
a b+a(-b) & =a(b+(-b)) \tag{D}\\
& =a 0 \tag{A4}\\
& =0
\end{align*}
$$

from class.
In other words, $a(-b)$ is an additive inverse of $a b$. By the uniqueness of additive inverses (proved in class), we have $a(-b)=-(a b)$. Similarly, we have

$$
\begin{align*}
a b+(-a) b & =(a+(-a)) b \tag{D}\\
& =0 b \tag{A4}\\
& =0
\end{align*}
$$

from class,
which implies that $(-a) b=-(a b)$.
For part (c), consider any $a, b, c \in \mathbb{Z}$. Then we have

$$
\begin{array}{rlrl}
a(b-c) & =a(b+(-c)) & \text { by definition } \\
& =a b+a(-c) & (\mathrm{D}) \tag{D}\\
& =a b+(-(a c)) & & \text { by part }(\mathrm{b}) \\
& =a b-a c & \text { by definition. }
\end{array}
$$

For part (d), consider any $a, b \in \mathbb{Z}$. Then we have

$$
\begin{aligned}
(-a)(-b) & =-(a(-b)) & & \text { by part (b) } \\
& =-(-(a b)) & & \text { by part }(\mathrm{b}) \\
& =a b & & \text { by part (a). }
\end{aligned}
$$

Problem 2. First Look at Induction.

(a) Prove that 3^{n} is an odd number for all natural numbers $n \in \mathbb{N}$. [Hint: Assume for contradiction that there exists a natural number such that 3^{n} is even. In this case, the Well-Ordering Axiom tells us that there is a smallest such integer. Call it $m \in \mathbb{N}$. Now try to find a contradiction.]
(b) Assume that there exists a real number $x \in \mathbb{R}$ such that $2^{x}=3$ (we call it $x=\log _{2}(3)$). Use part (a) to prove that $x \notin \mathbb{Q}$.

Proof. For part (a), let $S=\left\{n \in \mathbb{N}: 3^{n}\right.$ is even $\}$. We wish to show that S is the empty set. To show this, assume for contradiction that S is not empty. Then the Well-Ordering Axiom says that there exists a smallest element, say $m \in S$. We know that $3^{1}=3$ is odd, so that $1 \notin S$, and hence $1<m$. Now consider the natural number $m-1 \in \mathbb{N}$. Since m is the smallest element of S we must have $m-1 \notin S$, and hence 3^{m-1} is odd. But then $3^{m}=3 \cdot 3^{m-1}$, being the product of two odd numbers, is odd. This contradicts the fact that $m \in S$. We conclude that S is the empty set; in other words, 3^{n} is odd for all $n \in \mathbb{N}$.

For part (b), let $x=\log _{2}(3)$ and assume for contradiction that $x=m / n$ for some integers $m, n \in \mathbb{Z}$ with $n \in \mathbb{N}$. By definition we have

$$
\begin{aligned}
2^{x} & =3 \\
2^{m / n} & =3 \\
\left(2^{m / n}\right)^{n} & =3^{n} \\
2^{m} & =3^{n} .
\end{aligned}
$$

Since $n \in \mathbb{N}$ we know from part (a) that 3^{n} is an odd number. But since $2^{m}=3^{n}>1$ we know that $m \geq 1$ and hence $2^{m}=2 \cdot 2^{m-1}$ is even. Contradiction.

Problem 3. Square root of $a \in \mathbb{Z}$.

(a) Suppose that $\alpha \in \mathbb{R}$ and $\alpha \notin \mathbb{Z}$. In this case, use the Well-Ordering Axiom to prove that there exists an integer $b \in \mathbb{Z}$ such that

$$
b<\alpha<b+1 .
$$

[Hint: Let $S=\{n \in \mathbb{Z}: \alpha<n\}$. Since this set is nonempty and bounded below, the Well-Ordering Axiom says it has a least element, say $m \in S$.]
(b) Prove that for all $a \in \mathbb{Z}$ we have

$$
\sqrt{a} \notin \mathbb{Z} \Longrightarrow \sqrt{a} \notin \mathbb{Q} .
$$

[Hint: Assume that $\sqrt{a} \notin \mathbb{Z}$, so we have $b<\sqrt{a}<b+1$ for some $b \in \mathbb{Z}$ by part (a). Now assume for contradiction that $\sqrt{a} \in \mathbb{Q}$. Consider the set $T=\{n \in \mathbb{N}: n \sqrt{a} \in \mathbb{Z}\}$. Show that T is not empty, so by Well-Ordering it has a smallest element, say $m \in T$. Now show that $m(\sqrt{a}-b)$ is a smaller element of T. Contradiction.]
Proof. For part (a), let $\alpha \in \mathbb{R}$ and $\alpha \notin \mathbb{Z}$. Define the set $S=\{n \in \mathbb{Z}: \alpha<n\}$. By WellOrdering, this set has a least element, say $m \in S$. Since $m \in S$ we have $\alpha<m$ by definition. And since $m-1 \notin S$ we have $\alpha \nless m-1$ by definition. Finally, since $\alpha \neq m-1$ (because $\alpha \notin \mathbb{Z}$) this implies that $m-1<\alpha$. The desired integer is $b=m-1$.

For part (b), consider $a \in \mathbb{Z}$ and suppose that $\sqrt{a} \notin \mathbb{Z}$. In this case we want to show that $\sqrt{a} \notin \mathbb{Q}$. To do this, assume for contradiction that $\sqrt{a} \in \mathbb{Q}$, so we can write $\sqrt{a}=p / q$ with $p \in \mathbb{Z}$ and $q \in \mathbb{N}$. Now consider the set $T=\{n \in \mathbb{N}: n \sqrt{a} \in \mathbb{Z}\}$. We know that T is not empty because $q \in \mathbb{N}$ and $q \sqrt{a}=p \in \mathbb{Z}$ imply that $q \in T$. Thus, by Well-Ordering there is a smallest element, say $m \in T$.

Since $\sqrt{a} \notin \mathbb{Z}$ by assumption, part (a) implies that there exists an integer $b \in \mathbb{Z}$ such that $b<\sqrt{a}<b+1$. Subtracting b and then multiplying by m gives

$$
\begin{aligned}
& b<\sqrt{a}<b+1 \\
& 0<\sqrt{a}-b<1 \\
& 0<m(\sqrt{a}-b)<m .
\end{aligned}
$$

If we can show that $m(\sqrt{a}-b) \in T$ then this will be the desired contradiction, because m is supposed to be the smallest element of T. To show that $m(\sqrt{a}-b) \in T$ first note that since $m \sqrt{a} \in \mathbb{Z}$ and $m b \in \mathbb{Z}$ we have

$$
m(\sqrt{a}-b)=m \sqrt{a}-m b \in \mathbb{Z}
$$

and since $0<m(\sqrt{a}-b)$ this implies that $m(\sqrt{a}-b) \in \mathbb{N}$. Finally, we have

$$
m(\sqrt{a}-b) \sqrt{a}=m a-b(m \sqrt{a}) \in \mathbb{Z}
$$

and hence $m(\sqrt{a}-b) \in T$ as desired.

Problem 4. Greatest Common Divisor. Consider two integers $a, b \in \mathbb{Z}$ that are not both zero. Now consider the set of "common divisors"

$$
D=\{d \in \mathbb{Z}: d|a \wedge d| b\} .
$$

Show that this set is bounded above, so by Well-Ordering it has a largest element. Call the largest element $\operatorname{gcd}(a, b)$. Now show that $1 \leq \operatorname{gcd}(a, b)$. [Hint: Use Problem 3(d) from HW2.]
Proof. Recall from HW2 Problem 3(d) that for $x, y \in \mathbb{Z}$ with $y \neq 0$ we have $x|y \Rightarrow| x|\leq|y|$. Now consider integers $a, b \in \mathbb{Z}$ not both zero and define ther set of common divisors $D=\{d \in$ $\mathbb{Z}: d|a \wedge d| b\}$. Without loss of generality, let's assume that $a \neq 0$ (otherwise we can switch the names of a and b and the argument will be the same). Then for all $d \in D$ we have $d \mid a$ and $a \neq 0$, hence $d \leq|d| \leq|a|$ by the above the remark. Since the set D is bounded above (by $|a|)$, it follows from Well-Ordering that D has greatest element. We will denote this element by $\operatorname{gcd}(a, b) \in D$, and call it the "greatest common divisor" of a and b.

Finally, note that $1 \mid a$ and $1 \mid b$, so that $1 \in D$. Since $\operatorname{gcd}(a, b)$ is the greatest element of D it follows that $1 \leq \operatorname{gcd}(a, b)$, as desired.

