Problem 1. How do - and \times interact? For the following exercises I want you to give Euclidean style proofs using the axioms of \mathbb{Z} from the handout. You can also use the results we proved in class, such as: uniqueness of " $-a$ ", $0 a=0$ for all $a \in \mathbb{Z}$, and the Cancellation Lemma $(a+b=a+c) \Rightarrow(b=c)$.
(a) Recall that $-n$ is the unique integer satisfying $n+(-n)=0$. Prove that for all $n \in \mathbb{Z}$ we have $-(-n)=n$.
(b) Prove that for all $a, b \in \mathbb{Z}$ we have $(-a) b=a(-b)=-(a b)$. [Hint: Use the fact that $0 a=0$ for all $a \in \mathbb{Z}$, which we proved in class.]
(c) Recall that for all $m, n \in \mathbb{Z}$ we define $m-n:=m+(-n)$. Prove that for all $a, b, c \in \mathbb{Z}$ we have $a(b-c)=a b-a c$. [Hint: Use (b).]
(d) Prove that for all $a, b \in \mathbb{Z}$ we have $(-a)(-b)=a b$. [Hint: Show that $-(a b)=a(-b)$. Then use (a) and (b).]

Problem 2. First Look at Induction.

(a) Prove that 3^{n} is an odd number for all natural numbers $n \in \mathbb{N}$. [Hint: Assume for contradiction that there exists a natural number such that 3^{n} is even. In this case, the Well-Ordering Axiom tells us that there is a smallest such integer. Call it $m \in \mathbb{N}$. Now try to find a contradiction.]
(b) Assume that there exists a real number $x \in \mathbb{R}$ such that $2^{x}=3$ (we call it $x=\log _{2}(3)$). Use part (a) to prove that $x \notin \mathbb{Q}$.

Problem 3. Square root of $a \in \mathbb{Z}$.

(a) Suppose that $\alpha \in \mathbb{R}$ and $\alpha \notin \mathbb{Z}$. In this case, use the Well-Ordering Axiom to prove that there exists an integer $b \in \mathbb{Z}$ such that

$$
b<\alpha<b+1
$$

[Hint: Let $S=\{n \in \mathbb{Z}: \alpha<n\}$. Since this set is nonempty and bounded below, the Well-Ordering Axiom says it has a least element, say $m \in S$.]
(b) Prove that for all $a \in \mathbb{Z}$ we have

$$
\sqrt{a} \notin \mathbb{Z} \Longrightarrow \sqrt{a} \notin \mathbb{Q} .
$$

[Hint: Assume that $\sqrt{a} \notin \mathbb{Z}$, so we have $b<\sqrt{a}<b+1$ for some $b \in \mathbb{Z}$ by part (a). Now assume for contradiction that $\sqrt{a} \in \mathbb{Q}$. Consider the set $T=\{n \in \mathbb{N}: n \sqrt{a} \in \mathbb{Z}\}$. Show that T is not empty, so by Well-Ordering it has a smallest element, say $m \in T$. Now show that $m(\sqrt{a}-b)$ is a smaller element of T. Contradiction.]

Problem 4. Greatest Common Divisor. Consider two integers $a, b \in \mathbb{Z}$ that are not both zero. Now consider the set of "common divisors"

$$
D=\{d \in \mathbb{Z}: d|a \wedge d| b\} .
$$

Show that this set is bounded above, so by Well-Ordering it has a largest element. Call the largest element $\operatorname{gcd}(a, b)$. Now show that $1 \leq \operatorname{gcd}(a, b)$. [Hint: Use Problem 3(d) from HW1.]

