Problem 1. Logical Analysis.

- (a) Let Q and R be logical statements. Use a truth table to prove that $\neg(Q \lor R)$ is logically equivalent to $\neg Q \land \neg R$. [This is called de Morgan's law.]
- (b) Let P, Q, and R be logical statements. Use a truth table to prove that $(Q \lor R) \Rightarrow P$ is logically equivalent to $(Q \Rightarrow P) \land (R \Rightarrow P)$.
- (c) Apply the principles from (a) and (b) to prove that for all integers m and n we have "mn is even" \iff "m is even or n is even".

[Hint: Let P = "mn is even", Q = "m is even", and R = "n is even". Use part (a) for the " \Rightarrow " direction and use part (b) for the " \Leftarrow " direction.]

Here is the truth table for part (a):

Q	R	$Q \lor R$	$\neg(Q \lor R)$	$\neg Q$	$\neg R$	$(\neg Q \land \neg R)$
			F	F	F	F
		T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

Note that the third and sixth columns are equal. And here is the truth table for part (b):

P	Q	R	$Q \lor R$	$(Q \lor R) \Rightarrow P$	$Q \Rightarrow P$	$R \Rightarrow P$	$(Q \Rightarrow P) \land (R \Rightarrow P)$
T	T	T	T	T	T	T	T
T	T	F	T	T	T	T	T
T	F	T	T	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	F	F	F	F
F	T	F	T	F	F	T	F
F	F	T	T	F	T	F	F
F	F	F	F	T	T	T	T

Note that the fifth and eighth columns are equal. Finally, here is the proof of part (c):

Proof. Let $m, n \in \mathbb{Z}$ and consider the statements P = mn is even", Q = m is even", and R = n is even". We will prove that $P \Leftrightarrow (Q \lor R)$, in two separate steps.

First we will prove that $P \Rightarrow (Q \lor R)$. To do this we will rewrite the statement using the contrapositive and de Morgan's law to get

$$P \Rightarrow (Q \lor R),$$
$$\neg (Q \lor R) \Rightarrow \neg P,$$
$$(\neg Q \land \neg R) \Rightarrow \neg P.$$

This last statement says that "m and n are both odd" \Rightarrow "mn is odd". To prove this, assume that m and n are both odd, i.e., assume that there exist integers $k, \ell \in \mathbb{Z}$ such that m = 2k+1 and $n = 2\ell + 1$. In this case we have

$$mn = (2k+1)(2\ell+1) = 4k\ell + 2k + 2\ell + 1 = 2(2k\ell + k + \ell) + 1$$

which is odd as desired.

Next we will prove that $(Q \lor R) \Rightarrow P$. By part (b) it is enough to prove the equivalent statement $(Q \Rightarrow P) \land (R \Rightarrow P)$. In other words, we have to show that "*m* is even" \Rightarrow "*mn* is even" and "*n* is even" \Rightarrow "*mn* is even". So assume that *m* is even, i.e., assume that there exists an integer $k \in \mathbb{Z}$ such that m = 2k. Then we have mn = (2k)n = 2(kn), hence mn is even. Similarly, assume that *n* is even so there exists $\ell \in \mathbb{Z}$ with $n = 2\ell$. Then we have $mn = m(2\ell) = 2(m\ell)$, hence mn is even. This proves the result.

Since we have separately shown that $P \Rightarrow (Q \lor R)$ and $(Q \lor R) \Rightarrow P$, we conclude that $P \Leftrightarrow (Q \lor R)$, as desired.

Problem 2. Absolute Value. Given an integer *a* we define its absolute value as follows:

$$|a| := \begin{cases} a & \text{if } a > 0\\ 0 & \text{if } a = 0\\ -a & \text{if } a < 0 \end{cases}$$

Prove that for all integers a and b we have |ab| = |a||b|. [Hint: Your proof will break into at least five separate cases. You may assume without proof the properties (-a)(-b) = ab and (-a)b = a(-b) = -(ab); we'll prove them later.]

Proof. Consider any integers $a, b \in \mathbb{Z}$. We want to show that |ab| = |a||b|. We will break the proof into five cases.

Case 1: If at least one of a or b is zero then we have ab = 0, and hence |ab| = 0. On the other hand we also know that at least one of |a| or |b| is zero, hence |a||b| = 0. We conclude that |ab| = |a||b|.

Case 2: If a > 0 and b > 0 then ab > 0, so we have |ab| = ab. On the other hand we have |a| = a and |b| = b, hence |a||b| = ab. We conclude that |ab| = |a||b|.

Case 3: If a > 0 and b < 0 then ab < 0, so we have |ab| = -(ab). On the other hand, we have |a| = a and |b| = -b, hence |a||b| = a(-b). Since we have assumed that a(-b) = -(ab), this implies that |ab| = |a||b|.

Case 4: If a < 0 and b > 0 then ab < 0, so that |ab| = -(ab). On the other hand, we have |a| = -a and |b| = b, so that |a||b| = (-a)b. Since we have assumed that (-a)b = -(ab) this implies that |ab| = |a||b|.

Case 5: If a < 0 and b < 0 then ab > 0, so that |ab| = ab. On the other hand, we have |a| = -a and |b| = -b, hence |a||b| = (-a)(-b). Since we have assumed that (-a)(-b) = ab, this implies that |ab| = |a||b|.

[Remark: You've probably used the identity |ab| = |a||b| many times, but maybe you've never thought about why it's true. On HW3 you will finish the job by proving that (-a)b = a(-b) = -(ab) and (-a)(-b) = ab directly from the definition of the integers.]

Problem 3. Divisibility. Given integers m and n we will write "m|n" to mean that "there exists an integer k such that n = mk" and when this is the case we will say that "m divides n" or "n is divisible by m". Now let a, b, and c be integers. Prove the following properties.

- (a) If a|b and b|c then a|c.
- (b) If a|b and a|c then a|(bx + cy) for all integers x and y.

- (c) If a|b and b|a then $a = \pm b$. [Hint: Use the fact that uv = 0 implies u = 0 or v = 0.]
- (d) If a|b and b is nonzero then $|a| \leq |b|$. [Hint: Use the result of Problem 2.]

Proof. For part (a), assume that a|b and b|c, i.e., assume that there exist integers $k, \ell \in \mathbb{Z}$ such that b = ak and $c = b\ell$. Then we have

$$c = b\ell = (ak)\ell = a(k\ell),$$

hence a|c, as desired.

For part (b), assume that a|b and a|c, i.e., assume that there exist integers $k, \ell \in \mathbb{Z}$ such that b = ak and $c = a\ell$. Then for any integers $x, y \in \mathbb{Z}$ we have

$$bx + cy = (ak)x + (a\ell)y = a(kx) + a(\ell y) = a(kx + \ell y),$$

hence a|(bx + cy) as desired.

For part (c) assume that a|b and b|a, i.e., assume that there exist integers $k, \ell \in \mathbb{Z}$ such that b = ak and $a = b\ell$. Then we have

$$a = b\ell$$

$$a = (ak)\ell$$

$$a = a(k\ell)$$

$$0 = a(k\ell) - a$$

$$0 = a(k\ell - 1).$$

If a = 0 then we must have b = 0 and hence $a = \pm b$ as desired. If $a \neq 0$ then the equation $0 = a(k\ell - 1)$ implies that $k\ell - 1 = 0$, hence $k\ell = 1$. Since k and ℓ are integers, this can only happen when $k = \ell = \pm 1$. We conclude that $a = bk = \pm b$ as desired.

For part (d), let $b \neq 0$ and assume that a|b, i.e., assume that there exists $k \in \mathbb{Z}$ such that b = ak. Note that $k \neq 0$ since otherwise we would have b = 0, which is a contradiction. Since k is a nonzero integer we must have $1 \leq |k|$. Then multiplying both sides by |a| and using the result of Problem 2 gives

$$1 \le |k|$$
$$|a| \le |a||k|$$
$$|a| \le |ak|$$
$$|a| \le |b|,$$

as desired.

[Remark: Some of the steps here, such as the fact that $1 \le |k|$ and the implication " $1 \le |k|$ " \Rightarrow " $|a| \le |a| |k|$ ", were not fully explained. We'll fill in the gaps later when we see the formal definition of \mathbb{Z} .]

Problem 4. The Square Root of 5. Prove that $\sqrt{5}$ is not a ratio of integers, in two steps.

- (a) First prove the following **lemma**: Let n be an integer. If n^2 is divisible by 5, then so is n. [Hint: Use the contrapositive and note that there are four separate ways for an integer to be **not** divisible by 5. Sorry it's a bit tedious; we will find a better way to do this later.]
- (b) Use the method of contradiction to prove that $\sqrt{5}$ is not a ratio of integers. Explicitly quote your lemma in the proof. [Hint: Your proof should begin as follows: "Assume for contradiction that $\sqrt{5}$ is a ratio of integers. In this case, ..."]

Lemma: Let n be an integer. Then we have " $5|n^2 \Rightarrow 5|n^2$ ".

Proof. We prove the contrapositive statement " $5 n \neq 5 n^{2}$ ". So assume that 5 does not divide n. In this case we want to show that 5 does **not** divide n^2 . There are four cases.

Case 1: If n = 5k + 1 for some $k \in \mathbb{Z}$ then we have

$$n^{2} = (5k+1)^{2} = 25k^{2} + 10k + 1 = 5(5k^{2} + 2k) + 1,$$

hence n^2 is not divisible by 5.

Case 2: If n = 5k + 2 for some $k \in \mathbb{Z}$ then we have

$$n^{2} = (5k+2)^{2} = 25k^{2} + 20k + 4 = 5(5k^{2} + 4k) + 4,$$

hence n^2 is not divisible by 5.

Case 3: If n = 5k + 3 for some $k \in \mathbb{Z}$ then we have

$$n^{2} = (5k+3)^{2} = 25k^{2} + 30k + 9 = 5(5k^{2} + 6k + 1) + 4,$$

hence n^2 is not divisible by 5.

Case 4: If
$$n = 5k + 4$$
 for some $k \in \mathbb{Z}$ then we have
 $n^2 = (5k + 4)^2 = 25k^2 + 40k + 16 = 5(5k^2 + 8k + 3) + 1$,
hence n^2 is not divisible by 5

hence n^2 is not divisible by 5.

[Remark: Here we used the fact that remainders are unique. For example, if $n^2 = 5$ (something)+4, this means that the remainder of $n^2 \mod 5$ is 4. In particular, the remainder is not zero. We haven't proved uniqueness of remainders but we will do soon.]

Theorem: $\sqrt{5} \notin \mathbb{Q}$.

Proof. Assume for contradiction that $\sqrt{5} \in \mathbb{Q}$. In this case we can write $\sqrt{5} = a/b$ where a and b are integers with no common factor except ± 1 . Square both sides to get

$$\sqrt{5} = a/b$$

$$5 = a^2/b^2$$

$$5b^2 = a^2.$$

Since a^2 is a multiple of 5 the lemma implies that a = 5k for some $k \in \mathbb{Z}$. Now substitution gives

$$5b^{2} = a^{2}$$

$$5b^{2} = (5k)^{2}$$

$$5b^{2} = 25k^{2}$$

$$b^{2} = 5k^{2}.$$

Since b^2 is a multiple of 5 the lemma implies that $b = 5\ell$ for some $\ell \in \mathbb{Z}$. But now we see that 5 is a common factor of a and b, which contradicts the fact that they have no common factor except ±1. This contradiction implies that our original assumption (i.e., that $\sqrt{5} \in \mathbb{Q}$) was false.

[Remark: In this proof we assumed that every element of $\mathbb Q$ can be written in "lowest terms", which we haven't proved yet. We will.]