Problem 1. Logical Analysis.

(a) Let Q and R be logical statements. Use a truth table to prove that $\neg(Q \vee R)$ is logically equivalent to $\neg Q \wedge \neg R$. [This is called de Morgan's law.]
(b) Let P, Q, and R be logical statements. Use a truth table to prove that $(Q \vee R) \Rightarrow P$ is logically equivalent to $(Q \Rightarrow P) \wedge(R \Rightarrow P)$.
(c) Apply the principles from (a) and (b) to prove that for all integers m and n we have " $m n$ is even" \Longleftrightarrow " m is even or n is even".
[Hint: Let $P=" m n$ is even", $Q=" m$ is even", and $R=" n$ is even". Use part (a) for the " \Rightarrow " direction and use part (b) for the " \Leftarrow " direction.]

Here is the truth table for part (a):

Q	R	$Q \vee R$	$\neg(Q \vee R)$	$\neg Q$	$\neg R$	$(\neg Q \wedge \neg R)$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

Note that the third and sixth columns are equal. And here is the truth table for part (b):

| P | Q | R | $Q \vee R$ | $(Q \vee R) \Rightarrow P$ | $Q \Rightarrow P$ | $R \Rightarrow P$ | $(Q \Rightarrow P) \wedge(R \Rightarrow P)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T |
T	T	F	T	T	T	T	T
T	F	T	T	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	F	F	F	F
F	T	F	T	F	F	T	F
F	F	T	T	F	T	F	F
F	F	F	F	T	T	T	T

Note that the fifth and eighth columns are equal. Finally, here is the proof of part (c):
Proof. Let $m, n \in \mathbb{Z}$ and consider the statements $P=" m n$ is even", $Q=" m$ is even", and $R=$ " n is even". We will prove that $P \Leftrightarrow(Q \vee R)$, in two separate steps.

First we will prove that $P \Rightarrow(Q \vee R)$. To do this we will rewrite the statement using the contrapositive and de Morgan's law to get

$$
\begin{aligned}
P & \Rightarrow(Q \vee R), \\
\neg(Q \vee R) & \Rightarrow \neg P, \\
(\neg Q \wedge \neg R) & \Rightarrow \neg P .
\end{aligned}
$$

This last statement says that " m and n are both odd" \Rightarrow " $m n$ is odd". To prove this, assume that m and n are both odd, i.e., assume that there exist integers $k, \ell \in \mathbb{Z}$ such that $m=2 k+1$ and $n=2 \ell+1$. In this case we have

$$
\begin{aligned}
m n & =(2 k+1)(2 \ell+1) \\
& =4 k \ell+2 k+2 \ell+1 \\
& =2(2 k \ell+k+\ell)+1,
\end{aligned}
$$

which is odd as desired.
Next we will prove that $(Q \vee R) \Rightarrow P$. By part (b) it is enough to prove the equivalent statment $(Q \Rightarrow P) \wedge(R \Rightarrow P)$. In other words, we have to show that " m is even" \Rightarrow " $m n$ is even" and " n is even" \Rightarrow " $m n$ is even". So assume that m is even, i.e., assume that there exists an integer $k \in \mathbb{Z}$ such that $m=2 k$. Then we have $m n=(2 k) n=2(k n)$, hence $m n$ is even. Similarly, assume that n is even so there exists $\ell \in \mathbb{Z}$ with $n=2 \ell$. Then we have $m n=m(2 \ell)=2(m \ell)$, hence $m n$ is even. This proves the result.

Since we have separately shown that $P \Rightarrow(Q \vee R)$ and $(Q \vee R) \Rightarrow P$, we conclude that $P \Leftrightarrow(Q \vee R)$, as desired.

Problem 2. Absolute Value. Given an integer a we define its absolute value as follows:

$$
|a|:= \begin{cases}a & \text { if } a>0 \\ 0 & \text { if } a=0 \\ -a & \text { if } a<0\end{cases}
$$

Prove that for all integers a and b we have $|a b|=|a||b|$. [Hint: Your proof will break into at least five separate cases. You may assume without proof the properties $(-a)(-b)=a b$ and $(-a) b=a(-b)=-(a b)$; we'll prove them later.]
Proof. Consider any integers $a, b \in \mathbb{Z}$. We want to show that $|a b|=|a||b|$. We will break the proof into five cases.

Case 1: If at least one of a or b is zero then we have $a b=0$, and hence $|a b|=0$. On the other hand we also know that at least one of $|a|$ or $|b|$ is zero, hence $|a||b|=0$. We conclude that $|a b|=|a||b|$.

Case 2: If $a>0$ and $b>0$ then $a b>0$, so we have $|a b|=a b$. On the other hand we have $|a|=a$ and $|b|=b$, hence $|a||b|=a b$. We conclude that $|a b|=|a||b|$.

Case 3: If $a>0$ and $b<0$ then $a b<0$, so we have $|a b|=-(a b)$. On the other hand, we have $|a|=a$ and $|b|=-b$, hence $|a||b|=a(-b)$. Since we have assumed that $a(-b)=-(a b)$, this implies that $|a b|=|a||b|$.

Case 4: If $a<0$ and $b>0$ then $a b<0$, so that $|a b|=-(a b)$. On the other hand, we have $|a|=-a$ and $|b|=b$, so that $|a||b|=(-a) b$. Since we have assumed that $(-a) b=-(a b)$ this implies that $|a b|=|a||b|$.

Case 5: If $a<0$ and $b<0$ then $a b>0$, so that $|a b|=a b$. On the other hand, we have $|a|=-a$ and $|b|=-b$, hence $|a||b|=(-a)(-b)$. Since we have assumed that $(-a)(-b)=a b$, this implies that $|a b|=|a||b|$.
[Remark: You've probably used the identity $|a b|=|a||b|$ many times, but maybe you've never thought about why it's true. On HW3 you will finish the job by proving that $(-a) b=a(-b)=$ $-(a b)$ and $(-a)(-b)=a b$ directly from the definition of the integers.]

Problem 3. Divisibility. Given integers m and n we will write " $m \mid n$ " to mean that "there exists an integer k such that $n=m k$ " and when this is the case we will say that " m divides n " or " n is divisible by m ". Now let a, b, and c be integers. Prove the following properties.
(a) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(b) If $a \mid b$ and $a \mid c$ then $a \mid(b x+c y)$ for all integers x and y.
(c) If $a \mid b$ and $b \mid a$ then $a= \pm b$. [Hint: Use the fact that $u v=0$ implies $u=0$ or $v=0$.]
(d) If $a \mid b$ and b is nonzero then $|a| \leq|b|$. [Hint: Use the result of Problem 2.]

Proof. For part (a), assume that $a \mid b$ and $b \mid c$, i.e., assume that there exist integers $k, \ell \in \mathbb{Z}$ such that $b=a k$ and $c=b \ell$. Then we have

$$
c=b \ell=(a k) \ell=a(k \ell),
$$

hence $a \mid c$, as desired.
For part (b), assume that $a \mid b$ and $a \mid c$, i.e., assume that there exist integers $k, \ell \in \mathbb{Z}$ such that $b=a k$ and $c=a \ell$. Then for any integers $x, y \in \mathbb{Z}$ we have

$$
b x+c y=(a k) x+(a \ell) y=a(k x)+a(\ell y)=a(k x+\ell y),
$$

hence $a \mid(b x+c y)$ as desired.
For part (c) assume that $a \mid b$ and $b \mid a$, i.e., assume that there exist integers $k, \ell \in \mathbb{Z}$ such that $b=a k$ and $a=b \ell$. Then we have

$$
\begin{aligned}
& a=b \ell \\
& a=(a k) \ell \\
& a=a(k \ell) \\
& 0=a(k \ell)-a \\
& 0=a(k \ell-1) .
\end{aligned}
$$

If $a=0$ then we must have $b=0$ and hence $a= \pm b$ as desired. If $a \neq 0$ then the equation $0=a(k \ell-1)$ implies that $k \ell-1=0$, hence $k \ell=1$. Since k and ℓ are integers, this can only happen when $k=\ell= \pm 1$. We conclude that $a=b k= \pm b$ as desired.

For part (d), let $b \neq 0$ and assume that $a \mid b$, i.e., assume that there exists $k \in \mathbb{Z}$ such that $b=a k$. Note that $k \neq 0$ since otherwise we would have $b=0$, which is a contradiction. Since k is a nonzero integer we must have $1 \leq|k|$. Then multiplying both sides by $|a|$ and using the result of Problem 2 gives

$$
\begin{aligned}
1 & \leq|k| \\
|a| & \leq|a||k| \\
|a| & \leq|a k| \\
|a| & \leq|b|,
\end{aligned}
$$

as desired.
[Remark: Some of the steps here, such as the fact that $1 \leq|k|$ and the implication " $1 \leq|k|$ " \Rightarrow " $|a| \leq|a||k|$ ", were not fully explained. We'll fill in the gaps later when we see the formal definition of \mathbb{Z}.]

Problem 4. The Square Root of 5 . Prove that $\sqrt{5}$ is not a ratio of integers, in two steps.
(a) First prove the following lemma: Let n be an integer. If n^{2} is divisible by 5 , then so is n. [Hint: Use the contrapositive and note that there are four separate ways for an integer to be not divisible by 5 . Sorry it's a bit tedious; we will find a better way to do this later.]
(b) Use the method of contradiction to prove that $\sqrt{5}$ is not a ratio of integers. Explicitly quote your lemma in the proof. [Hint: Your proof should begin as follows: "Assume for contradiction that $\sqrt{5}$ is a ratio of integers. In this case, ..."]

Lemma: Let n be an integer. Then we have " $5\left|n^{2} \Rightarrow 5\right| n^{2}$ ".

Proof. We prove the contrapositive statement " $5 \nmid n \Rightarrow 5 \nmid n^{2}$ ". So assume that 5 does not divide n. In this case we want to show that 5 does not divide n^{2}. There are four cases.

Case 1: If $n=5 k+1$ for some $k \in \mathbb{Z}$ then we have

$$
n^{2}=(5 k+1)^{2}=25 k^{2}+10 k+1=5\left(5 k^{2}+2 k\right)+1,
$$

hence n^{2} is not divisible by 5 .
Case 2: If $n=5 k+2$ for some $k \in \mathbb{Z}$ then we have

$$
n^{2}=(5 k+2)^{2}=25 k^{2}+20 k+4=5\left(5 k^{2}+4 k\right)+4,
$$

hence n^{2} is not divisible by 5 .
Case 3: If $n=5 k+3$ for some $k \in \mathbb{Z}$ then we have

$$
n^{2}=(5 k+3)^{2}=25 k^{2}+30 k+9=5\left(5 k^{2}+6 k+1\right)+4,
$$

hence n^{2} is not divisible by 5 .
Case 4: If $n=5 k+4$ for some $k \in \mathbb{Z}$ then we have

$$
n^{2}=(5 k+4)^{2}=25 k^{2}+40 k+16=5\left(5 k^{2}+8 k+3\right)+1,
$$

hence n^{2} is not divisible by 5 .
[Remark: Here we used the fact that remainders are unique. For example, if $n^{2}=5$ (something) +4 , this means that the remainder of $n^{2} \bmod 5$ is 4 . In particular, the remainder is not zero. We haven't proved uniqueness of remainders but we will do soon.]

Theorem: $\sqrt{5} \notin \mathbb{Q}$.
Proof. Assume for contradiction that $\sqrt{5} \in \mathbb{Q}$. In this case we can write $\sqrt{5}=a / b$ where a and b are integers with no common factor except ± 1. Square both sides to get

$$
\begin{aligned}
\sqrt{5} & =a / b \\
5 & =a^{2} / b^{2} \\
5 b^{2} & =a^{2} .
\end{aligned}
$$

Since a^{2} is a multiple of 5 the lemma implies that $a=5 k$ for some $k \in \mathbb{Z}$. Now substitution gives

$$
\begin{aligned}
5 b^{2} & =a^{2} \\
5 b^{2} & =(5 k)^{2} \\
5 b^{2} & =25 k^{2} \\
b^{2} & =5 k^{2} .
\end{aligned}
$$

Since b^{2} is a multiple of 5 the lemma implies that $b=5 \ell$ for some $\ell \in \mathbb{Z}$. But now we see that 5 is a common factor of a and b, which contradicts the fact that they have no common factor except ± 1. This contradiction implies that our original assumption (i.e., that $\sqrt{5} \in \mathbb{Q}$) was false.
[Remark: In this proof we assumed that every element of \mathbb{Q} can be written in "lowest terms", which we haven't proved yet. We will.]

