
Math 230 D Fall 2015
Homework 2 Drew Armstrong

Problem 1. Logical Analysis.

(a) Let Q and R be logical statements. Use a truth table to prove that ¬(Q∨R) is logically
equivalent to ¬Q ∧ ¬R. [This is called de Morgan’s law.]

(b) Let P , Q, and R be logical statements. Use a truth table to prove that (Q ∨ R)⇒ P
is logically equivalent to (Q⇒ P ) ∧ (R⇒ P ).

(c) Apply the principles from (a) and (b) to prove that for all integers m and n we have

“mn is even” ⇐⇒ “m is even or n is even”.

[Hint: Let P =“mn is even”, Q =“m is even”, and R =“n is even”. Use part (a) for
the “⇒” direction and use part (b) for the “⇐” direction.]

Here is the truth table for part (a):

Q R Q ∨R ¬(Q ∨R) ¬Q ¬R (¬Q ∧ ¬R)
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Note that the third and sixth columns are equal. And here is the truth table for part (b):

P Q R Q ∨R (Q ∨R)⇒ P Q⇒ P R⇒ P (Q⇒ P ) ∧ (R⇒ P )
T T T T T T T T
T T F T T T T T
T F T T T T T T
T F F F T T T T
F T T T F F F F
F T F T F F T F
F F T T F T F F
F F F F T T T T

Note that the fifth and eighth columns are equal. Finally, here is the proof of part (c):

Proof. Let m,n ∈ Z and consider the statements P =“mn is even”, Q =“m is even”, and
R =“n is even”. We will prove that P ⇔ (Q ∨R), in two separate steps.

First we will prove that P ⇒ (Q ∨ R). To do this we will rewrite the statement using the
contrapositive and de Morgan’s law to get

P ⇒ (Q ∨R),

¬(Q ∨R)⇒ ¬P,
(¬Q ∧ ¬R)⇒ ¬P.

This last statement says that “m and n are both odd” ⇒ “mn is odd”. To prove this, assume
that m and n are both odd, i.e., assume that there exist integers k, ` ∈ Z such that m = 2k+1
and n = 2` + 1. In this case we have

mn = (2k + 1)(2` + 1)

= 4k` + 2k + 2` + 1

= 2(2k` + k + `) + 1,



which is odd as desired.
Next we will prove that (Q ∨ R) ⇒ P . By part (b) it is enough to prove the equivalent

statment (Q ⇒ P ) ∧ (R ⇒ P ). In other words, we have to show that “m is even” ⇒ “mn
is even” and “n is even” ⇒ “mn is even”. So assume that m is even, i.e., assume that there
exists an integer k ∈ Z such that m = 2k. Then we have mn = (2k)n = 2(kn), hence mn
is even. Similarly, assume that n is even so there exists ` ∈ Z with n = 2`. Then we have
mn = m(2`) = 2(m`), hence mn is even. This proves the result.

Since we have separately shown that P ⇒ (Q ∨ R) and (Q ∨ R) ⇒ P , we conclude that
P ⇔ (Q ∨R), as desired. �

Problem 2. Absolute Value. Given an integer a we define its absolute value as follows:

|a| :=


a if a > 0

0 if a = 0

−a if a < 0

Prove that for all integers a and b we have |ab| = |a||b|. [Hint: Your proof will break into at
least five separate cases. You may assume without proof the properties (−a)(−b) = ab and
(−a)b = a(−b) = −(ab); we’ll prove them later.]

Proof. Consider any integers a, b ∈ Z. We want to show that |ab| = |a||b|. We will break the
proof into five cases.

Case 1: If at least one of a or b is zero then we have ab = 0, and hence |ab| = 0. On the
other hand we also know that at least one of |a| or |b| is zero, hence |a||b| = 0. We conclude
that |ab| = |a||b|.

Case 2: If a > 0 and b > 0 then ab > 0, so we have |ab| = ab. On the other hand we have
|a| = a and |b| = b, hence |a||b| = ab. We conclude that |ab| = |a||b|.

Case 3: If a > 0 and b < 0 then ab < 0, so we have |ab| = −(ab). On the other hand, we
have |a| = a and |b| = −b, hence |a||b| = a(−b). Since we have assumed that a(−b) = −(ab),
this implies that |ab| = |a||b|.

Case 4: If a < 0 and b > 0 then ab < 0, so that |ab| = −(ab). On the other hand, we have
|a| = −a and |b| = b, so that |a||b| = (−a)b. Since we have assumed that (−a)b = −(ab) this
implies that |ab| = |a||b|.

Case 5: If a < 0 and b < 0 then ab > 0, so that |ab| = ab. On the other hand, we have
|a| = −a and |b| = −b, hence |a||b| = (−a)(−b). Since we have assumed that (−a)(−b) = ab,
this implies that |ab| = |a||b|.

�

[Remark: You’ve probably used the identity |ab| = |a||b| many times, but maybe you’ve never
thought about why it’s true. On HW3 you will finish the job by proving that (−a)b = a(−b) =
−(ab) and (−a)(−b) = ab directly from the definition of the integers.]

Problem 3. Divisibility. Given integers m and n we will write “m|n” to mean that “there
exists an integer k such that n = mk” and when this is the case we will say that “m divides
n” or “n is divisible by m”. Now let a, b, and c be integers. Prove the following properties.

(a) If a|b and b|c then a|c.
(b) If a|b and a|c then a|(bx + cy) for all integers x and y.



(c) If a|b and b|a then a = ±b. [Hint: Use the fact that uv = 0 implies u = 0 or v = 0.]
(d) If a|b and b is nonzero then |a| ≤ |b|. [Hint: Use the result of Problem 2.]

Proof. For part (a), assume that a|b and b|c, i.e., assume that there exist integers k, ` ∈ Z
such that b = ak and c = b`. Then we have

c = b` = (ak)` = a(k`),

hence a|c, as desired.
For part (b), assume that a|b and a|c, i.e., assume that there exist integers k, ` ∈ Z such

that b = ak and c = a`. Then for any integers x, y ∈ Z we have

bx + cy = (ak)x + (a`)y = a(kx) + a(`y) = a(kx + `y),

hence a|(bx + cy) as desired.
For part (c) assume that a|b and b|a, i.e., assume that there exist integers k, ` ∈ Z such

that b = ak and a = b`. Then we have

a = b`

a = (ak)`

a = a(k`)

0 = a(k`)− a

0 = a(k`− 1).

If a = 0 then we must have b = 0 and hence a = ±b as desired. If a 6= 0 then the equation
0 = a(k`− 1) implies that k`− 1 = 0, hence k` = 1. Since k and ` are integers, this can only
happen when k = ` = ±1. We conclude that a = bk = ±b as desired.

For part (d), let b 6= 0 and assume that a|b, i.e., assume that there exists k ∈ Z such that
b = ak. Note that k 6= 0 since otherwise we would have b = 0, which is a contradiction. Since
k is a nonzero integer we must have 1 ≤ |k|. Then multiplying both sides by |a| and using the
result of Problem 2 gives

1 ≤ |k|
|a| ≤ |a||k|
|a| ≤ |ak|
|a| ≤ |b|,

as desired. �

[Remark: Some of the steps here, such as the fact that 1 ≤ |k| and the implication “1 ≤ |k|” ⇒
“|a| ≤ |a||k|”, were not fully explained. We’ll fill in the gaps later when we see the formal definition
of Z.]

Problem 4. The Square Root of 5. Prove that
√

5 is not a ratio of integers, in two steps.

(a) First prove the following lemma: Let n be an integer. If n2 is divisible by 5, then so
is n. [Hint: Use the contrapositive and note that there are four separate ways for an
integer to be not divisible by 5. Sorry it’s a bit tedious; we will find a better way to
do this later.]

(b) Use the method of contradiction to prove that
√

5 is not a ratio of integers. Explicitly
quote your lemma in the proof. [Hint: Your proof should begin as follows: “Assume
for contradiction that

√
5 is a ratio of integers. In this case, . . . ”]

Lemma: Let n be an integer. Then we have “5|n2 ⇒ 5|n2”.



Proof. We prove the contrapositive statement “5 6 |n ⇒ 5 6 |n2”. So assume that 5 does not
divide n. In this case we want to show that 5 does not divide n2. There are four cases.

Case 1: If n = 5k + 1 for some k ∈ Z then we have

n2 = (5k + 1)2 = 25k2 + 10k + 1 = 5(5k2 + 2k) + 1,

hence n2 is not divisible by 5.

Case 2: If n = 5k + 2 for some k ∈ Z then we have

n2 = (5k + 2)2 = 25k2 + 20k + 4 = 5(5k2 + 4k) + 4,

hence n2 is not divisible by 5.

Case 3: If n = 5k + 3 for some k ∈ Z then we have

n2 = (5k + 3)2 = 25k2 + 30k + 9 = 5(5k2 + 6k + 1) + 4,

hence n2 is not divisible by 5.

Case 4: If n = 5k + 4 for some k ∈ Z then we have

n2 = (5k + 4)2 = 25k2 + 40k + 16 = 5(5k2 + 8k + 3) + 1,

hence n2 is not divisible by 5. �

[Remark: Here we used the fact that remainders are unique. For example, if n2 = 5(something)+4,
this means that the remainder of n2 mod 5 is 4. In particular, the remainder is not zero. We
haven’t proved uniqueness of remainders but we will do soon.]

Theorem:
√

5 6∈ Q.

Proof. Assume for contradiction that
√

5 ∈ Q. In this case we can write
√

5 = a/b where a
and b are integers with no common factor except ±1. Square both sides to get

√
5 = a/b

5 = a2/b2

5b2 = a2.

Since a2 is a multiple of 5 the lemma implies that a = 5k for some k ∈ Z. Now substitution
gives

5b2 = a2

5b2 = (5k)2

5b2 = 25k2

b2 = 5k2.

Since b2 is a multiple of 5 the lemma implies that b = 5` for some ` ∈ Z. But now we see that
5 is a common factor of a and b, which contradicts the fact that they have no common factor
except ±1. This contradiction implies that our original assumption (i.e., that

√
5 ∈ Q) was

false. �

[Remark: In this proof we assumed that every element of Q can be written in “lowest terms”,
which we haven’t proved yet. We will.]


