Math 230 D Fall 2015
Exam 3 — Mon Dec 7 Drew Armstrong

There are 4 problems, worth 6 points each, for a total of 24 points. This is a closed book
test. Anyone caught cheating will receive a score of zero.

Problem 1. Hand Computations.

(a) Use Pascal’s Triangle to compute the expansion of (1 + z)°.

Here is Pascal’s Triangle:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

Thus we conclude that

(1+2)5 =1+ 5z + 102% + 1023 + 52 + 2°.

(b) Compute the standard form of [3,7—:1,}7

[JLL—[””'W = [35]; = [0]r.

T 3-2-1-4.321,
(c) Compute the standard form of [26]7.
27 = [2°]7 - [2°)7 = [8]7 - [8]r = [L]7 - [L]7 = [1].

Problem 2. Modular Arithmetic. Let 0 # n € Z. Define the set Z/n := {[a}, : a € Z}
with equivalence relation [a],, = [b],, < n|(a — b) and algebraic operations

[aln, + [b]n == [a + b]n and [a]y, - [b]y, = [ab]y.
(You can assume that this is all well-defined.) Recall that Z/n is a ring with additive
identity element [0],, and multiplicative identity element [1],,.

(a) If ged(a,n) = 1, prove that the element [a], € Z/n has a multiplicative inverse.
[You can assume Bézout’s Lemma.|

Proof. Since ged(a,n) = 1, Bézout’s Lemma says that there exist z,y € Z with
ax + ny = 1. Then we have

l—ax=ny = nljlax—1) = [l],=laz]p = [a]n " [Z]n.
It follows that the inverse exists:

,1]

[ |n = [2]n.



(b) If the element [a],, € Z/n has a multiplicative inverse, prove that there exist x,y € Z
with axz + ny = 1.

Proof. Suppose there exists € Z with [a],, - [z], = [1],,. Then we have
1], =laz], = n|(l—ax) = 1—ax = ny for some y € Z.

(c) If there exist x,y € Z with ax + ny = 1, prove that ged(a,n) = 1.

Proof. Suppose that ax +ny = 1 for some z,y € Z and let d € Z be any common
divisor of a and b, say a = dk and b = df for some k, ¢ € Z. Then we have

1 =az+by = (dk)z + (dl)y = d(kz + ('y),
which implies that d = +1. It follows that the greatest common divisor is 1. n

Problem 3. Principle of Induction.

(a) Accurately state the Principle of Induction.

Let P(n) be a statement depending on an integer n € Z. Suppose that

e P(b) is true for some specific b € Z, and
o for all n > b we have P(n) = P(n+1).

Then it follows that P(n) is true for all n > b.

(b) For all integers n > 2 define the statement P(n) := “1 4+2+---4+n = W”.
Prove that P(2) is a true statement.
2-3
142=——
+ 2

(c) Now fix an integer k£ > 2 and assume for induction that P(k) is true. In this case,
prove that P(k + 1) is also true.

Proof. Fix an integer k > 2 and assume for induction that P(k) is true. In other

words, assume that
k(k+1)

L+2+4 k==

Then it follows that
1+2+4-+(k+1)=0+2+ - +k)+(k+1)
k(k+1)

=5+ E+

(B )@

k+2)k+1)

(k+1)+1)
5 .
In other words, P(k + 1) is true. O

—~

(
(k:+ 1)(




Problem 4. Binomial Theorem.

(a) Accurately state the Binomial Theorem.

For all integers a,b,n € Z with n > 0 we have

(b) Let k,p € Z with p prime and 1 < k < p — 1. In this case you can assume that p
divides the integer ﬁik)!' Use this fact together with the Binomial Theorem to
prove that for all a,b € Z we have [(a + b)P], = [P + b] .

Proof. When 1 < k < p we have assumed that

o], =0

Then using the Binomial Theorem gives
p—1

p! kpp—k
P
a +,§:1k!(p !abp + 0P

(a+ b)), = -




