There are 4 problems, worth 6 points each, for a total of 24 points. This is a closed book test. Anyone caught cheating will receive a score of zero.

Problem 1. Hand Computations.

(a) Use Pascal's Triangle to compute the expansion of $(1+x)^{5}$.

Here is Pascal's Triangle:

Thus we conclude that

$$
(1+x)^{5}=1+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5} .
$$

(b) Compute the standard form of $\left[\frac{7!}{3!4!}\right]_{7}$.

$$
\left[\frac{7!}{3!4!}\right]_{7}=\left[\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot T}{3 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot \mathrm{I}}\right]_{7}=[35]_{7}=[0]_{7} .
$$

(c) Compute the standard form of $\left[2^{6}\right]_{7}$.

$$
\left[2^{6}\right]_{7}=\left[2^{3}\right]_{7} \cdot\left[2^{3}\right]_{7}=[8]_{7} \cdot[8]_{7}=[1]_{7} \cdot[1]_{7}=[1]_{7} .
$$

Problem 2. Modular Arithmetic. Let $0 \neq n \in \mathbb{Z}$. Define the set $\mathbb{Z} / n:=\left\{[a]_{n}: a \in \mathbb{Z}\right\}$ with equivalence relation $[a]_{n}=[b]_{n} \Leftrightarrow n \mid(a-b)$ and algebraic operations

$$
[a]_{n}+[b]_{n}:=[a+b]_{n} \quad \text { and } \quad[a]_{n} \cdot[b]_{n}:=[a b]_{n}
$$

(You can assume that this is all well-defined.) Recall that \mathbb{Z} / n is a ring with additive identity element $[0]_{n}$ and multiplicative identity element $[1]_{n}$.
(a) If $\operatorname{gcd}(a, n)=1$, prove that the element $[a]_{n} \in \mathbb{Z} / n$ has a multiplicative inverse. [You can assume Bézout's Lemma.]

Proof. Since $\operatorname{gcd}(a, n)=1$, Bézout's Lemma says that there exist $x, y \in \mathbb{Z}$ with $a x+n y=1$. Then we have

$$
1-a x=n y \quad \Longrightarrow \quad n \mid(a x-1) \quad \Longrightarrow \quad[1]_{n}=[a x]_{n}=[a]_{n} \cdot[x]_{n} .
$$

It follows that the inverse exists:

$$
\left[a^{-1}\right]_{n}=[x]_{n} .
$$

(b) If the element $[a]_{n} \in \mathbb{Z} / n$ has a multiplicative inverse, prove that there exist $x, y \in \mathbb{Z}$ with $a x+n y=1$.

Proof. Suppose there exists $x \in \mathbb{Z}$ with $[a]_{n} \cdot[x]_{n}=[1]_{n}$. Then we have

$$
[1]_{n}=[a x]_{n} \quad \Longrightarrow \quad n \mid(1-a x) \quad \Longrightarrow \quad 1-a x=n y \text { for some } y \in \mathbb{Z}
$$

(c) If there exist $x, y \in \mathbb{Z}$ with $a x+n y=1$, prove that $\operatorname{gcd}(a, n)=1$.

Proof. Suppose that $a x+n y=1$ for some $x, y \in \mathbb{Z}$ and let $d \in \mathbb{Z}$ be any common divisor of a and b, say $a=d k$ and $b=d \ell$ for some $k, \ell \in \mathbb{Z}$. Then we have

$$
1=a x+b y=(d k) x+(d \ell) y=d\left(k x+\ell^{\prime} y\right)
$$

which implies that $d= \pm 1$. It follows that the greatest common divisor is 1 .

Problem 3. Principle of Induction.

(a) Accurately state the Principle of Induction.

Let $P(n)$ be a statement depending on an integer $n \in \mathbb{Z}$. Suppose that

$$
\left\{\begin{array}{l}
\bullet P(b) \text { is true for some specific } b \in \mathbb{Z} \text {, and } \\
\bullet \text { for all } n \geq b \text { we have } P(n) \Rightarrow P(n+1) .
\end{array}\right.
$$

Then it follows that $P(n)$ is true for all $n \geq b$.
(b) For all integers $n \geq 2$ define the statement $P(n):=" 1+2+\cdots+n=\frac{n(n+1)}{2}$ ". Prove that $P(2)$ is a true statement.

$$
1+2=\frac{2 \cdot 3}{2}
$$

(c) Now fix an integer $k \geq 2$ and assume for induction that $P(k)$ is true. In this case, prove that $P(k+1)$ is also true.

Proof. Fix an integer $k \geq 2$ and assume for induction that $P(k)$ is true. In other words, assume that

$$
1+2+\cdots+k=\frac{k(k+1)}{2} .
$$

Then it follows that

$$
\begin{aligned}
1+2+\cdots+(k+1) & =(1+2+\cdots+k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \\
& =\left(\frac{k}{2}+1\right)(k+1) \\
& =\frac{(k+2)}{2}(k+1) \\
& =\frac{(k+1)((k+1)+1)}{2} .
\end{aligned}
$$

In other words, $P(k+1)$ is true.

Problem 4. Binomial Theorem.

(a) Accurately state the Binomial Theorem.

For all integers $a, b, n \in \mathbb{Z}$ with $n \geq 0$ we have

$$
(a+b)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{k} b^{n-k} .
$$

(b) Let $k, p \in \mathbb{Z}$ with p prime and $1 \leq k \leq p-1$. In this case you can assume that p divides the integer $\frac{p!}{k!(p-k)!}$. Use this fact together with the Binomial Theorem to prove that for all $a, b \in \mathbb{Z}$ we have $\left[(a+b)^{p}\right]_{p}=\left[a^{p}+b^{p}\right]_{p}$.

Proof. When $1<k<p$ we have assumed that

$$
\left[\frac{p!}{k!(p-k)!}\right]_{p}=[0]_{p}
$$

Then using the Binomial Theorem gives

$$
\begin{aligned}
{\left[(a+b)^{p}\right]_{p} } & =\left[a^{p}+\sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} a^{k} b^{p-k}+b^{p}\right]_{p} \\
& =\left[a^{p}\right]_{p}+\sum_{k=1}^{p-1}\left[\frac{p!}{k!(p-k)!}\right]_{p} \cdot\left[a^{k} b^{p-k}\right]_{p}+\left[b^{p}\right]_{p} \\
& =\left[a^{p}\right]_{p}+\sum_{k=1}^{p-1}[0]_{p} \cdot\left[a^{k} b^{p-k}\right]_{p}+\left[b^{p}\right]_{p} \\
& =\left[a^{p}\right]_{p}+\sum_{k=1}^{p-1}[0]_{p}+\left[b^{p}\right]_{p} \\
& =\left[a^{p}\right]_{p}+[0]_{p}+\left[b^{p}\right]_{p} \\
& =\left[a^{p}\right]_{p}+\left[b^{p}\right]_{p} .
\end{aligned}
$$

