
Math 230 D Fall 2015
Exam 3 — Mon Dec 7 Drew Armstrong

There are 4 problems, worth 6 points each, for a total of 24 points. This is a closed book
test. Anyone caught cheating will receive a score of zero.

Problem 1. Hand Computations.

(a) Use Pascal’s Triangle to compute the expansion of (1 + x)5.

Here is Pascal’s Triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Thus we conclude that

(1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x4 + x5.

(b) Compute the standard form of
[

7!
3!4!

]
7
.[

7!

3!4!

]
7

=

[
7 · 6 · 5 ·(((((

4 · 3 · 2 · 1
3 · 2 · 1 ·(((((

4 · 3 · 2 · 1

]
7

= [35]7 = [0]7.

(c) Compute the standard form of
[
26
]
7
.

[26]7 = [23]7 · [23]7 = [8]7 · [8]7 = [1]7 · [1]7 = [1]7.

Problem 2. Modular Arithmetic. Let 0 6= n ∈ Z. Define the set Z/n := {[a]n : a ∈ Z}
with equivalence relation [a]n = [b]n ⇔ n|(a− b) and algebraic operations

[a]n + [b]n := [a + b]n and [a]n · [b]n := [ab]n.

(You can assume that this is all well-defined.) Recall that Z/n is a ring with additive
identity element [0]n and multiplicative identity element [1]n.

(a) If gcd(a, n) = 1, prove that the element [a]n ∈ Z/n has a multiplicative inverse.
[You can assume Bézout’s Lemma.]

Proof. Since gcd(a, n) = 1, Bézout’s Lemma says that there exist x, y ∈ Z with
ax + ny = 1. Then we have

1− ax = ny =⇒ n|(ax− 1) =⇒ [1]n = [ax]n = [a]n · [x]n.

It follows that the inverse exists:

[a−1]n = [x]n.
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(b) If the element [a]n ∈ Z/n has a multiplicative inverse, prove that there exist x, y ∈ Z
with ax + ny = 1.

Proof. Suppose there exists x ∈ Z with [a]n · [x]n = [1]n. Then we have

[1]n = [ax]n =⇒ n|(1− ax) =⇒ 1− ax = ny for some y ∈ Z.

�

(c) If there exist x, y ∈ Z with ax + ny = 1, prove that gcd(a, n) = 1.

Proof. Suppose that ax + ny = 1 for some x, y ∈ Z and let d ∈ Z be any common
divisor of a and b, say a = dk and b = d` for some k, ` ∈ Z. Then we have

1 = ax + by = (dk)x + (d`)y = d(kx + `′y),

which implies that d = ±1. It follows that the greatest common divisor is 1. �

Problem 3. Principle of Induction.

(a) Accurately state the Principle of Induction.

Let P (n) be a statement depending on an integer n ∈ Z. Suppose that{
• P (b) is true for some specific b ∈ Z, and
• for all n ≥ b we have P (n)⇒ P (n + 1).

Then it follows that P (n) is true for all n ≥ b.

(b) For all integers n ≥ 2 define the statement P (n) := “1 + 2 + · · · + n = n(n+1)
2 ”.

Prove that P (2) is a true statement.

1 + 2 =
2 · 3

2

(c) Now fix an integer k ≥ 2 and assume for induction that P (k) is true. In this case,
prove that P (k + 1) is also true.

Proof. Fix an integer k ≥ 2 and assume for induction that P (k) is true. In other
words, assume that

1 + 2 + · · ·+ k =
k(k + 1)

2
.

Then it follows that

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=

(
k

2
+ 1

)
(k + 1)

=
(k + 2)

2
(k + 1)

=
(k + 1)((k + 1) + 1)

2
.

In other words, P (k + 1) is true. �



Problem 4. Binomial Theorem.

(a) Accurately state the Binomial Theorem.

For all integers a, b, n ∈ Z with n ≥ 0 we have

(a + b)n =

n∑
k=0

n!

k!(n− k)!
akbn−k.

(b) Let k, p ∈ Z with p prime and 1 ≤ k ≤ p − 1. In this case you can assume that p

divides the integer p!
k!(p−k)! . Use this fact together with the Binomial Theorem to

prove that for all a, b ∈ Z we have [(a + b)p]p = [ap + bp]p.

Proof. When 1 < k < p we have assumed that[
p!

k!(p− k)!

]
p

= [0]p.

Then using the Binomial Theorem gives

[(a + b)p]p =

[
ap +

p−1∑
k=1

p!

k!(p− k)!
akbp−k + bp

]
p

= [ap]p +

p−1∑
k=1

[
p!

k!(p− k)!

]
p

· [akbp−k]p + [bp]p

= [ap]p +

p−1∑
k=1

[0]p · [a
kbp−k]p + [bp]p

= [ap]p +

p−1∑
k=1

[0]p + [bp]p

= [ap]p + [0]p + [bp]p

= [ap]p + [bp]p.
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