
Math 230 D Fall 2015
Exam 2 — Fri Oct 30 Drew Armstrong

There are 4 problems, worth 6 points each. This is a closed book test. Anyone caught
cheating will receive a score of zero.

Problem 1. Division Theorem.

(a) Accurately state the Division Theorem.

Given integers a, b ∈ Z with b 6= 0, there exist unique integers q, r ∈ Z satisfying
• a = bq + r,
• 0 ≤ r < |b|.

(b) Use the Division Theorem to prove that there is no integer n ∈ Z satisfying the
property 3n = 4.

Proof. Assume for contradiction that there exists n ∈ Z such that 3n = 4. Applying
the Division Theorem to 4 mod 3 gives

4 = 3 · 1 + 1 with 0 ≤ 1 < 3,

so the quotient is 1 and the remainder is 1. But by assumption we also have

4 = 3 · n + 0 with 0 ≤ 0 < 3,

so the quotient is n and the remainder is 0. Since 0 6= 1, this contradicts the
uniqueness part of the Division Theorem. �

Problem 2. Axioms of Z. Consider the following three axioms:

(1) ∀a, b, c ∈ Z, a + (b + c) = (a + b) + c.
(2) ∃0 ∈ Z, ∀a ∈ Z, a + 0 = 0 + a = a.
(3) ∀a ∈ Z, ∃ − a ∈ Z, a + (−a) = (−a) + a = 0.

(a) Explicitly use the axioms to prove the following Cancellation Lemma:

∀a, b, c ∈ Z, (a + b = a + c)⇒ (b = c).

Proof. Consider a, b, c ∈ Z and assume that a + b = a + c. Then we have

b = 0 + b (2)

= ((−a) + a) + b (3)

= (−a) + (a + b) (1)

= (−a) + (a + c) assumption

= ((−a) + a) + c (1)

= 0 + c (2)

= c, (3)

as desired. �

(b) Let a ∈ Z and suppose there exists a′ ∈ Z such that a + a′ = 0. In this case prove
that a′ = (−a). [Hint: You can quote the Cancellation Lemma from part (a).]



Proof. By assumption we have a + a′ = 0 and by axiom (3) we have a + (−a) = 0,
hence a + a′ = a + (−a). Now the Cancellation Lemma implies a′ = (−a). �

Problem 3. Linear Diophantine Equations.

(a) Use the Extended Euclidean Algorithm to find one particular solution x′, y′ ∈ Z
to the equation 22x′ + 16y′ = 2.

Consider triples of integers (x, y, z) such that 22x+16y = z. Applying the Euclidean
Algorithm to the two obvious triples (1, 0, 22) and (0, 1, 16) gives

x y z
1 0 22
0 1 16
1 −1 6
−2 3 4

3 −4 2
−8 11 0

The second last row says 22(3) + 16(−4) = 2, so we can take (x′, y′) = (3,−4).

(b) Write down the complete solution x, y ∈ Z to the equation 22x + 16y = 0.

If d = gcd(a, b) with a = da′ and b = db′, you proved on the homework that the
general solution to ax + by = 0 is (x, y) = (−b′k, a′k) for all k ∈ Z. In this case
we have a = 22, b = 16, d = 2, a′ = 11, and b′ = 8, so the general solution to
22x + 16y = 0 is

(x, y) = (−8k, 11k) for all k ∈ Z.
We could also read this solution from the last row of the table in part (a).

(c) Write down the complete solution x, y ∈ Z to the equation 22x + 16y = 2.

Given the particular solution (3,−4) and the general homogeneous solution (−8k, 11k),
the general solution is given by

(x, y) = (3− 8k,−4 + 11k) for all k ∈ Z.

Problem 4. Well-Ordering.

(a) Accurately state some version of the Well-Ordering Axiom.

Every nonempty set of positive integers contains a least element.

(b) Use Well-Ordering to prove that every integer n > 1 is divisible by a prime number.
[Hint: Assume for contradiction that there exists an integer n > 1 such that n is
not divisible by a prime number.]

Proof. Assume for contradiction that there exists an integer n > 1 that is not
divisible by a prime number, and let S be the set of these integers. Since S 6= ∅,
well-ordering says that S has a least element; call it m ∈ S. Since m is not divisible
by a prime number it is not prime, so by definition m has a proper factor, i.e., there
exists d ∈ Z such that d|m and 1 < d < m. Now I claim that d has a prime factor.
If not, then since d > 1 we would have d ∈ S. But then since d < m this would
contradict the minimality of m. Thus there exists a prime p such that p|d. Since
d|m this implies that p|m, contradicting the fact that m ∈ S. �


