There are 4 problems, worth 6 points each. This is a closed book test. Anyone caught cheating will receive a score of **zero**.

Problem 1. Division Theorem.

- (a) Accurately state the Division Theorem.
 - Given integers $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique integers $q, r \in \mathbb{Z}$ satisfying
 - a = bq + r,
 - $0 \le r < |b|$.
- (b) Use the Division Theorem to prove that there is **no** integer $n \in \mathbb{Z}$ satisfying the property 3n = 4.

Proof. Assume for contradiction that there exists $n \in \mathbb{Z}$ such that 3n = 4. Applying the Division Theorem to 4 mod 3 gives

 $4 = 3 \cdot 1 + 1$ with $0 \le 1 < 3$,

so the quotient is 1 and the remainder is 1. But by assumption we also have

 $4 = 3 \cdot n + 0$ with $0 \le 0 < 3$,

so the quotient is n and the remainder is 0. Since $0 \neq 1$, this contradicts the uniqueness part of the Division Theorem.

Problem 2. Axioms of \mathbb{Z} . Consider the following three axioms:

- (1) $\forall a, b, c \in \mathbb{Z}, a + (b + c) = (a + b) + c.$
- (2) $\exists 0 \in \mathbb{Z}, \forall a \in \mathbb{Z}, a+0=0+a=a.$
- (3) $\forall a \in \mathbb{Z}, \exists -a \in \mathbb{Z}, a + (-a) = (-a) + a = 0.$
- (a) Explicitly use the axioms to prove the following Cancellation Lemma:

$$\forall a, b, c \in \mathbb{Z}, (a+b=a+c) \Rightarrow (b=c).$$

Proof. Consider $a, b, c \in \mathbb{Z}$ and assume that a + b = a + c. Then we have

b = 0 + b	(2)
= ((-a) + a) + b	(3)
= (-a) + (a+b)	(1)
= (-a) + (a+c)	assumption
= ((-a) + a) + c	(1)
= 0 + c	(2)
= c,	(3)

as desired.

(b) Let $a \in \mathbb{Z}$ and suppose there exists $a' \in \mathbb{Z}$ such that a + a' = 0. In this case prove that a' = (-a). [Hint: You can quote the Cancellation Lemma from part (a).]

Proof. By assumption we have a + a' = 0 and by axiom (3) we have a + (-a) = 0, hence a + a' = a + (-a). Now the Cancellation Lemma implies a' = (-a).

Problem 3. Linear Diophantine Equations.

(a) Use the Extended Euclidean Algorithm to find one particular solution $x', y' \in \mathbb{Z}$ to the equation 22x' + 16y' = 2.

Consider triples of integers (x, y, z) such that 22x+16y = z. Applying the Euclidean Algorithm to the two obvious triples (1, 0, 22) and (0, 1, 16) gives

x	y	z
1	0	22
0	1	16
1	-1	6
-2	3	4
3	-4	2
-8	11	0

The second last row says 22(3) + 16(-4) = 2, so we can take (x', y') = (3, -4).

(b) Write down the **complete solution** $x, y \in \mathbb{Z}$ to the equation 22x + 16y = 0.

If d = gcd(a, b) with a = da' and b = db', you proved on the homework that the general solution to ax + by = 0 is (x, y) = (-b'k, a'k) for all $k \in \mathbb{Z}$. In this case we have a = 22, b = 16, d = 2, a' = 11, and b' = 8, so the general solution to 22x + 16y = 0 is

(x,y) = (-8k, 11k) for all $k \in \mathbb{Z}$.

We could also read this solution from the last row of the table in part (a).

(c) Write down the **complete solution** $x, y \in \mathbb{Z}$ to the equation 22x + 16y = 2.

Given the particular solution (3, -4) and the general homogeneous solution (-8k, 11k), the general solution is given by

(x, y) = (3 - 8k, -4 + 11k) for all $k \in \mathbb{Z}$.

Problem 4. Well-Ordering.

(a) Accurately state some version of the Well-Ordering Axiom.

Every nonempty set of positive integers contains a least element.

(b) Use Well-Ordering to prove that **every** integer n > 1 is divisible by a prime number. [Hint: Assume for contradiction that **there exists** an integer n > 1 such that n is **not** divisible by a prime number.]

Proof. Assume for contradiction that there exists an integer n > 1 that is **not** divisible by a prime number, and let S be the set of these integers. Since $S \neq \emptyset$, well-ordering says that S has a least element; call it $m \in S$. Since m is not divisible by a prime number it is not prime, so by definition m has a proper factor, i.e., there exists $d \in \mathbb{Z}$ such that d|m and 1 < d < m. Now I claim that d has a prime factor. If not, then since d > 1 we would have $d \in S$. But then since d < m this would contradict the minimality of m. Thus there exists a prime p such that p|d. Since d|m this implies that p|m, contradicting the fact that $m \in S$.