There are 4 problems, worth 6 points each. This is a closed book test. Anyone caught cheating will receive a score of zero.

Problem 1. Division Theorem.

(a) Accurately state the Division Theorem.

Given integers $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist unique integers $q, r \in \mathbb{Z}$ satisfying

- $a=b q+r$,
- $0 \leq r<|b|$.
(b) Use the Division Theorem to prove that there is no integer $n \in \mathbb{Z}$ satisfying the property $3 n=4$.

Proof. Assume for contradiction that there exists $n \in \mathbb{Z}$ such that $3 n=4$. Applying the Division Theorem to $4 \bmod 3$ gives

$$
4=3 \cdot 1+1 \text { with } 0 \leq 1<3
$$

so the quotient is 1 and the remainder is 1 . But by assumption we also have

$$
4=3 \cdot n+0 \text { with } 0 \leq 0<3
$$

so the quotient is n and the remainder is 0 . Since $0 \neq 1$, this contradicts the uniqueness part of the Division Theorem.

Problem 2. Axioms of \mathbb{Z}. Consider the following three axioms:
(1) $\forall a, b, c \in \mathbb{Z}, a+(b+c)=(a+b)+c$.
(2) $\exists 0 \in \mathbb{Z}, \forall a \in \mathbb{Z}, a+0=0+a=a$.
(3) $\forall a \in \mathbb{Z}, \exists-a \in \mathbb{Z}, a+(-a)=(-a)+a=0$.
(a) Explicitly use the axioms to prove the following Cancellation Lemma:

$$
\forall a, b, c \in \mathbb{Z},(a+b=a+c) \Rightarrow(b=c)
$$

Proof. Consider $a, b, c \in \mathbb{Z}$ and assume that $a+b=a+c$. Then we have

$$
\begin{align*}
b & =0+b \tag{2}\\
& =((-a)+a)+b \tag{3}\\
& =(-a)+(a+b) \tag{1}\\
& =(-a)+(a+c) \\
& =((-a)+a)+c \tag{1}\\
& =0+c \tag{2}\\
& =c, \tag{3}
\end{align*}
$$

assumption
as desired.
(b) Let $a \in \mathbb{Z}$ and suppose there exists $a^{\prime} \in \mathbb{Z}$ such that $a+a^{\prime}=0$. In this case prove that $a^{\prime}=(-a)$. [Hint: You can quote the Cancellation Lemma from part (a).]

Proof. By assumption we have $a+a^{\prime}=0$ and by axiom (3) we have $a+(-a)=0$, hence $a+a^{\prime}=a+(-a)$. Now the Cancellation Lemma implies $a^{\prime}=(-a)$.

Problem 3. Linear Diophantine Equations.

(a) Use the Extended Euclidean Algorithm to find one particular solution $x^{\prime}, y^{\prime} \in \mathbb{Z}$ to the equation $22 x^{\prime}+16 y^{\prime}=2$.

Consider triples of integers (x, y, z) such that $22 x+16 y=z$. Applying the Euclidean Algorithm to the two obvious triples $(1,0,22)$ and $(0,1,16)$ gives

x	y	z
1	0	22
0	1	16
1	-1	6
-2	3	4
3	-4	2
-8	11	0

The second last row says $22(3)+16(-4)=2$, so we can take $\left(x^{\prime}, y^{\prime}\right)=(3,-4)$.
(b) Write down the complete solution $x, y \in \mathbb{Z}$ to the equation $22 x+16 y=0$.

If $d=\operatorname{gcd}(a, b)$ with $a=d a^{\prime}$ and $b=d b^{\prime}$, you proved on the homework that the general solution to $a x+b y=0$ is $(x, y)=\left(-b^{\prime} k, a^{\prime} k\right)$ for all $k \in \mathbb{Z}$. In this case we have $a=22, b=16, d=2, a^{\prime}=11$, and $b^{\prime}=8$, so the general solution to $22 x+16 y=0$ is

$$
(x, y)=(-8 k, 11 k) \text { for all } k \in \mathbb{Z}
$$

We could also read this solution from the last row of the table in part (a).
(c) Write down the complete solution $x, y \in \mathbb{Z}$ to the equation $22 x+16 y=2$.

Given the particular solution $(3,-4)$ and the general homogeneous solution $(-8 k, 11 k)$, the general solution is given by

$$
(x, y)=(3-8 k,-4+11 k) \text { for all } k \in \mathbb{Z}
$$

Problem 4. Well-Ordering.

(a) Accurately state some version of the Well-Ordering Axiom.

Every nonempty set of positive integers contains a least element.
(b) Use Well-Ordering to prove that every integer $n>1$ is divisible by a prime number. [Hint: Assume for contradiction that there exists an integer $n>1$ such that n is not divisible by a prime number.]

Proof. Assume for contradiction that there exists an integer $n>1$ that is not divisible by a prime number, and let S be the set of these integers. Since $S \neq \emptyset$, well-ordering says that S has a least element; call it $m \in S$. Since m is not divisible by a prime number it is not prime, so by definition m has a proper factor, i.e., there exists $d \in \mathbb{Z}$ such that $d \mid m$ and $1<d<m$. Now I claim that d has a prime factor. If not, then since $d>1$ we would have $d \in S$. But then since $d<m$ this would contradict the minimality of m. Thus there exists a prime p such that $p \mid d$. Since $d \mid m$ this implies that $p \mid m$, contradicting the fact that $m \in S$.

