There are 4 problems, worth 6 points each. This is a closed book test. Anyone caught cheating will receive a score of zero.

Problem 1.

(a) State the principle of the contrapositive.

Let P and Q be logical statements. Then the statement $P \Rightarrow Q$ is logically equivalent to the statement $\neg Q \Rightarrow \neg P$.
(b) State De Morgan's law.

Let P and Q be logical statements. Then we have

- $\neg(P \vee Q)=(\neg P \wedge \neg Q)$
- $\neg(P \wedge Q)=(\neg P \vee \neg Q)$
(c) Tell me the opposite of the following statement: "Every even number greater than 2 is a sum of two prime numbers."

Let me put the key words in boldface: "Every even number greater than 2 is a sum of two prime numbers." If S is the set of even numbers greater than 2 and if $P(n)$ is the statment " n is a sum of two prime numbers", then our statement can be written as

$$
\forall n \in S, P(n)
$$

The opposite statement is

$$
\neg(\forall n \in S, P(n))=(\exists n \in S, \neg P(n)) .
$$

In other words: "There exists an even number greater than 2 that is not a sum of two prime numbers."
[Remark: The intermediate work was not necessary. I awarded full points if you just skipped to the answer. The statement " $\forall n \in S, P(n)$ " is called "Goldbach's conjecture". People believe it is true but nobody knows how to prove it.]

Problem 2.

(a) Draw the truth table for the Boolean function $P \vee Q$.

P	Q	$P \vee Q$
T	T	T
T	F	T
F	T	T
F	F	F

(b) Use a truth table to prove that $P \vee Q$ is logically equivalent to $(P \Rightarrow Q) \Rightarrow Q$.

P	Q	$P \vee Q$	$P \Rightarrow Q$	$(P \Rightarrow Q) \Rightarrow Q$
T	T	T	T	T
T	F	T	F	T
F	T	T	T	T
F	F	F	T	F

(c) Now use the result from part (b) together with De Morgan's law to express $P \wedge Q$ using only the functions \neg and \Rightarrow (i.e., don't use \vee or \wedge).

Applying the result of part (b) to the statements $\neg P$ and $\neg Q$ gives

$$
(\neg P \vee \neg Q)=((\neg P \Rightarrow \neg Q) \Rightarrow \neg Q)
$$

and applying De Morgan's law gives

$$
\begin{aligned}
\neg(P \wedge Q) & =(\neg P \vee \neg Q) \\
(P \wedge Q) & =\neg(\neg P \vee \neg Q) .
\end{aligned}
$$

Putting these two equations together gives

$$
(P \wedge Q)=\neg((\neg P \Rightarrow \neg Q) \Rightarrow \neg Q)
$$

This can be simplified slightly, but not much.

Problem 3.

(a) Consider two real numbers $\alpha, \beta \in \mathbb{R}$ with $\alpha \neq 0$. Use the method of contradiction to prove the following statement: "if $\alpha \in \mathbb{Q}$ and $\beta \notin \mathbb{Q}$ then $\alpha \beta \notin \mathbb{Q}$ ".
[Hint: Let $\alpha \in \mathbb{Q}$ and $\beta \notin \mathbb{Q}$. Now assume for contradiction that $\alpha \beta \in \mathbb{Q}$.]
Proof. Let $\alpha \in \mathbb{Q}$ and $\beta \notin \mathbb{Q}$. Now assume for contradiction that $\alpha \beta \in \mathbb{Q}$. Since $\alpha \in \mathbb{Q}$ and $\alpha \neq 0$ we can write

$$
\alpha=\frac{a}{b}
$$

for some nonzero integers $a, b \in \mathbb{Z}$. Then since $\alpha \beta \in \mathbb{Q}$ we can write

$$
\alpha \beta=\frac{c}{d}
$$

for some integers $c, d \in \mathbb{Z}$. Since $\beta \notin \mathbb{Q}$ we know that $\beta \neq 0$, and hence $\alpha \beta \neq 0$, so that c and d are nonzero. Finally, we have

$$
\beta=\frac{\alpha \beta}{\alpha}=\frac{c / d}{a / b}=\frac{b c}{a d} .
$$

Since $a d \in \mathbb{Z}$ and $b c \in \mathbb{Z}$ with $a d \neq 0$ we conclude that $\beta \in \mathbb{Q}$, but this contradicts the fact that $\beta \notin \mathbb{Q}$. We conclude that the assumption $\alpha \beta \in \mathbb{Q}$ was false, hence $\alpha \beta \notin \mathbb{Q}$.
[Remark: It's okay if you didn't worry about the zeroness/nonzeroness of the integers. I didn't worry about it either. (In fact, I forgot to mention that $\alpha \neq 0$ in the statement of the problem.)]
(b) Use the result from part (a) to prove that $\sqrt{12} \notin \mathbb{Q}$. [Hint: You can assume without proof that $\sqrt{3} \notin \mathbb{Q}$. We proved this in class.]

Proof. First note that $\sqrt{12}=\sqrt{4 \cdot 3}=\sqrt{4} \sqrt{3}=2 \sqrt{3}$. Let $\alpha=2$ and $\beta=\sqrt{3}$ so that $\alpha \beta=\sqrt{12}$. Since we know that $2 \in \mathbb{Q}$ and $\sqrt{3} \notin \mathbb{Q}$, the result of part (a) implies that $\sqrt{12} \notin \mathbb{Q}$.

Problem 4.

(a) Let P, Q, and R be logical statements. Use a truth table to prove that $P \Rightarrow(Q \vee R)$ is logically equivalent to $(P \wedge \neg Q) \Rightarrow R$.

| P | Q | R | $Q \vee R$ | $P \Rightarrow(Q \vee R)$ | $\neg Q$ | $P \wedge \neg Q$ | $(P \wedge \neg Q) \Rightarrow R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | T | F | F | T |
| T | T | F | T | T | F | F | T |
| T | F | T | T | T | T | T | T |
| T | F | F | F | F | T | T | F |
| F | T | T | T | T | F | F | T |
| F | T | F | T | T | F | F | T |
| F | F | T | T | T | T | F | T |
| F | F | F | F | T | T | F | T |

(b) Now consider two integers $m, n \in \mathbb{Z}$. Use the result from part (a) to prove that " m is odd" \Rightarrow " n is odd or $m^{2}+n^{2}$ is odd".

Proof. Let $P=" m$ is odd", $Q=" n$ is odd", and $R=" m^{2}+n^{2}$ is odd". We want to prove that $P \Rightarrow(Q \vee R)$. By part (a) it is enough to prove that $(P \wedge \neg Q) \Rightarrow R$, in other words,

$$
" m \text { is odd and } n \text { is even" } \Rightarrow " m^{2}+n^{2} \text { is odd". }
$$

So assume that m is odd and n is even; i.e., assume we can write $m=2 k$ and $n=2 \ell+1$ for some integers $k, \ell \in \mathbb{Z}$. In this case we have

$$
\begin{aligned}
m^{2}+n^{2} & =(2 k)^{2}+(2 \ell+1)^{2} \\
& =\left(4 k^{2}\right)+\left(4 \ell^{2}+4 \ell+1\right) \\
& =2\left(2 k^{2}+2 \ell^{2}+2 \ell\right)+1,
\end{aligned}
$$

which is odd.

