There are 4 problems, worth 6 points each. This is a closed book test. Anyone caught cheating will receive a score of **zero**.

Problem 1.

(a) State the principle of the contrapositive.

Let P and Q be logical statements. Then the statement $P \Rightarrow Q$ is logically equivalent to the statement $\neg Q \Rightarrow \neg P$.

(b) State De Morgan's law.

Let P and Q be logical statements. Then we have

- $\neg (P \lor Q) = (\neg P \land \neg Q)$ • $\neg (P \land Q) = (\neg P \lor \neg Q)$
- (c) Tell me the **opposite** of the following statement: "Every even number greater than 2 is a sum of two prime numbers."

Let me put the key words in boldface: "**Every** even number greater than 2 is a sum of two prime numbers." If S is the set of even numbers greater than 2 and if P(n) is the statement "n is a sum of two prime numbers", then our statement can be written as

$$\forall n \in S, P(n).$$

The opposite statement is

$$\neg(\forall n \in S, P(n)) = (\exists n \in S, \neg P(n)).$$

In other words: "There exists an even number greater than 2 that is not a sum of two prime numbers."

[Remark: The intermediate work was not necessary. I awarded full points if you just skipped to the answer. The statement " $\forall n \in S, P(n)$ " is called "Goldbach's conjecture". People believe it is true but nobody knows how to prove it.]

Problem 2.

(a) Draw the truth table for the Boolean function $P \lor Q$.

(b) Use a truth table to prove that $P \lor Q$ is logically equivalent to $(P \Rightarrow Q) \Rightarrow Q$.

P	Q	$P \lor Q$	$P \Rightarrow Q$	$(P \Rightarrow Q) \Rightarrow Q$
T	T	T	T	T
T	F	T	F	T
F	T	T	T	T
F	F	F	T	F

(c) Now use the result from part (b) together with De Morgan's law to express $P \wedge Q$ using **only** the functions \neg and \Rightarrow (i.e., don't use \lor or \land).

Applying the result of part (b) to the statements $\neg P$ and $\neg Q$ gives

$$(\neg P \lor \neg Q) = ((\neg P \Rightarrow \neg Q) \Rightarrow \neg Q).$$

and applying De Morgan's law gives

$$\neg (P \land Q) = (\neg P \lor \neg Q)$$
$$(P \land Q) = \neg (\neg P \lor \neg Q)$$

Putting these two equations together gives

$$(P \land Q) = \neg((\neg P \Rightarrow \neg Q) \Rightarrow \neg Q).$$

This can be simplified slightly, but not much.

Problem 3.

(a) Consider two real numbers $\alpha, \beta \in \mathbb{R}$ with $\alpha \neq 0$. Use the method of contradiction to prove the following statement: "if $\alpha \in \mathbb{Q}$ and $\beta \notin \mathbb{Q}$ then $\alpha \beta \notin \mathbb{Q}$ ". [Hint: Let $\alpha \in \mathbb{Q}$ and $\beta \notin \mathbb{Q}$. Now assume for contradiction that $\alpha \beta \in \mathbb{Q}$.]

Proof. Let $\alpha \in \mathbb{Q}$ and $\beta \notin \mathbb{Q}$. Now assume for contradiction that $\alpha \beta \in \mathbb{Q}$. Since $\alpha \in \mathbb{Q}$ and $\alpha \neq 0$ we can write

$$\alpha = \frac{a}{b}$$

for some **nonzero** integers $a, b \in \mathbb{Z}$. Then since $\alpha \beta \in \mathbb{Q}$ we can write

$$\alpha\beta = \frac{c}{d}$$

for some integers $c, d \in \mathbb{Z}$. Since $\beta \notin \mathbb{Q}$ we know that $\beta \neq 0$, and hence $\alpha \beta \neq 0$, so that c and d are **nonzero**. Finally, we have

$$\beta = \frac{\alpha\beta}{\alpha} = \frac{c/d}{a/b} = \frac{bc}{ad}$$

Since $ad \in \mathbb{Z}$ and $bc \in \mathbb{Z}$ with $ad \neq 0$ we conclude that $\beta \in \mathbb{Q}$, but this contradicts the fact that $\beta \notin \mathbb{Q}$. We conclude that the assumption $\alpha\beta \in \mathbb{Q}$ was false, hence $\alpha\beta \notin \mathbb{Q}$.

[Remark: It's okay if you didn't worry about the zeroness/nonzeroness of the integers. I didn't worry about it either. (In fact, I forgot to mention that $\alpha \neq 0$ in the statement of the problem.)]

(b) Use the result from part (a) to prove that $\sqrt{12} \notin \mathbb{Q}$. [Hint: You can assume without proof that $\sqrt{3} \notin \mathbb{Q}$. We proved this in class.]

Proof. First note that $\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4}\sqrt{3} = 2\sqrt{3}$. Let $\alpha = 2$ and $\beta = \sqrt{3}$ so that $\alpha\beta = \sqrt{12}$. Since we know that $2 \in \mathbb{Q}$ and $\sqrt{3} \notin \mathbb{Q}$, the result of part (a) implies that $\sqrt{12} \notin \mathbb{Q}$.

Problem 4.

(a) Let P, Q, and R be logical statements. Use a truth table to prove that $P \Rightarrow (Q \lor R)$ is logically equivalent to $(P \land \neg Q) \Rightarrow R$.

P	Q	R	$Q \vee R$	$P \Rightarrow (Q \lor R)$	$\neg Q$	$P \wedge \neg Q$	$(P \land \neg Q) \Rightarrow R$
T	T	T	T	T	F	F	T
T	T	F	T	T	F	F	T
T	F	T	T	T	T	T	T
T	F	F	F	F	T	T	F
F	T	T	T	T	F	F	T
F	T	F	T	T	F	F	T
F	F	T	T	T	T	F	T
F	F	F	F	T	T	F	T

(b) Now consider two integers $m, n \in \mathbb{Z}$. Use the result from part (a) to prove that "*m* is odd" \Rightarrow "*n* is odd or $m^2 + n^2$ is odd".

Proof. Let P = "m is odd", Q = "n is odd", and $R = "m^2 + n^2$ is odd". We want to prove that $P \Rightarrow (Q \lor R)$. By part (a) it is enough to prove that $(P \land \neg Q) \Rightarrow R$, in other words,

"*m* is odd and *n* is even" \Rightarrow "*m*² + *n*² is odd".

So assume that m is odd and n is even; i.e., assume we can write m = 2k and $n = 2\ell + 1$ for some integers $k, \ell \in \mathbb{Z}$. In this case we have

$$m^{2} + n^{2} = (2k)^{2} + (2\ell + 1)^{2}$$
$$= (4k^{2}) + (4\ell^{2} + 4\ell + 1)$$
$$= 2(2k^{2} + 2\ell^{2} + 2\ell) + 1,$$

which is odd.