Here's a joke definition of the integers:

$$\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$$

We all "know" the basic properties of this set because we've been fooling around with it since childhood. But if we want to **prove** anything about \mathbb{Z} (and we do) then we need a formal definition. First I'll give a friendly definition. This just states everything we already "know" in formal language. As you see, it's a bit long. Afterwards I'll give a more efficient (but much more subtle) definition of \mathbb{Z} .

FRIENDLY DEFINITION.

Let \mathbb{Z} be a set equipped with

- an equivalence relation "=" defined by
 - $\forall a \in \mathbb{Z}, a = a \text{ (reflexive)}$
 - $\forall a, b \in \mathbb{Z}, a = b \Rightarrow b = a \text{ (symmetric)}$
 - $\forall a, b, c \in \mathbb{Z}, (a = b \text{ AND } b = c) \Rightarrow a = c \text{ (transitive)},$
- a total ordering "≤" defined by
 - $\forall a, b \in \mathbb{Z}, (a \leq b \text{ AND } b \leq a) \Rightarrow a = b \text{ (antisymmetric)}$
 - $\forall a, b, c \in \mathbb{Z}, (a \leq b \text{ AND } b \leq c) \Rightarrow a \leq c \text{ (transitive)}$
 - $\forall a, b \in \mathbb{Z}, a \leq b \text{ OR } b \leq a \text{ (total)}$
- and two binary operations
 - $\forall a, b \in \mathbb{Z}, \exists a + b \in \mathbb{Z} \text{ (addition)}$
 - $\forall a, b \in \mathbb{Z}, \exists ab \in \mathbb{Z} \text{ (multiplication)}$

which satisfy the following properties:

Axioms of Addition.

- (A1) $\forall a, b \in \mathbb{Z}, a + b = b + a$ (commutative)
- (A2) $\forall a, b, c \in \mathbb{Z}, a + (b + c) = (a + b) + c$ (associative)
- (A3) $\exists 0 \in \mathbb{Z}, \forall a \in \mathbb{Z}, 0 + a = a \text{ (additive identity exists)}$
- (A4) $\forall a \in \mathbb{Z}, \exists b \in \mathbb{Z}, a+b=0$ (additive inverses exist)

These four properties tell us that \mathbb{Z} is an additive group. It has a special element called 0 that acts as an "identity element" for addition, and every integer a has an "additive inverse", which we will call -a.

Axioms of Multiplication.

- (M1) $\forall a, b \in \mathbb{Z}, ab = ba$ (commutative)
- (M2) $\forall a, b, c \in \mathbb{Z}, a(bc) = (ab)c$ (associative)
- (M3) $\exists 1 \in \mathbb{Z}, 1 \neq 0, \forall a \in \mathbb{Z}, 1a = a$ (multiplicative identity exists)

Notice that elements of \mathbb{Z} do **not** have "multiplicative inverses". That is, we can't divide in \mathbb{Z} . So \mathbb{Z} is not quite a group under multiplication. We also need to say how addition and multiplication behave together.

Axiom of Distribution.

(D) $\forall a, b, c \in \mathbb{Z}, a(b+c) = ab + ac$

We can paraphrase these first eight properties by saying that \mathbb{Z} is a (commutative) ring. Next we will describe how arithmetic and order interact.

Axioms of Order.

- (O1) $\forall a, b, c \in \mathbb{Z}, a \leq b \Rightarrow a + c \leq b + c$
- (O2) $\forall a, b, c \in \mathbb{Z}, (a \leq b \text{ AND } 0 \leq c) \Rightarrow ac \leq bc$
- (O3) 0 < 1 (this means $0 \le 1$ AND $0 \ne 1$)

These first eleven properties tell us that \mathbb{Z} is an ordered ring. However, we have not yet defined \mathbb{Z} because there are other ordered rings, for example the real numbers \mathbb{R} . To distinguish \mathbb{Z} among the ordered rings we need one final axiom. This last axiom is **not** obvious and it took a long time for people to realize that it is an axiom and not a theorem.

The Well-Ordering Axiom.

Let $\mathbb{N} = \{a \in \mathbb{Z} : 1 \leq a\}$ denote the set of natural numbers. Every nonempty subset of \mathbb{N} has a smallest element. Formally,

(WO)
$$\forall X \subseteq \mathbb{N}, X \neq \emptyset, \exists a \in X, \forall b \in X, a \leq b$$

This axiom is also known as the principle of induction; we will use it a lot. Thus endeth the friendly definition.

SUBTLE DEFINITION.

The above definition is friendly and practical. **But it is quite long!** You might ask whether we can define \mathbb{Z} using fewer axioms; the answer is "Yes". The most efficient definition of \mathbb{Z} is due to Giuseppe Peano (1858–1932). His definition is efficient, but it no longer looks much like the integers.

Peano's Axioms. Let \mathbb{N} be a set equipped with an equivalence relation "=" and a unary "successor" operation $S: \mathbb{N} \to \mathbb{N}$, satisfying the following four axioms:

- (P1) $1 \in \mathbb{N}$ (1 is in \mathbb{N})
- (P2) $\forall n \in \mathbb{N}, S(n) \neq 1$ (1 is not the successor of any natural number)
- (P3) $\forall m, n \in \mathbb{N}, S(m) = S(n) \Rightarrow m = n \ (S \text{ is an injective function})$
- (P4) (The induction principle) If a set $K \subseteq \mathbb{N}$ of natural numbers satisfies
 - $-1 \in K$, and
 - $\forall n \in \mathbb{N}, n \in K \Rightarrow S(n) \in K,$

then $K = \mathbb{N}$.

With a lot of work, one can use \mathbb{N} and S to define a set \mathbb{Z} with addition, multiplication, a total ordering, etc., and show that it has the desired properties. Good luck to you. I'll stick with the friendly definition.