Problem 1 (Binomial Theorem). We proved in class that for all $n \geq 0$ we have

$$
(1+x)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x^{k} .
$$

Use this to prove that for all integers $a, b \in \mathbb{Z}$ we have

$$
(a+b)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{n-k} b^{k} .
$$

[Hint: Show directly that the result holds when $a=0$. When $a \neq 0$, substitute $x=\frac{b}{a}$ then then multiply both sides by a^{n}.]

Proof. To save space I will write $\binom{n}{k}$ instead of $\frac{n!}{k!(n-k)!}$. First suppose that $a=0$. Then we have

$$
b^{n}=(0+b)^{n}=\binom{n}{0} 0^{n} b^{0}+\binom{n}{1} 0^{n-1} b^{1}+\cdots+\binom{n}{n} 0^{0} b^{n}=0^{0} b^{n} .
$$

If you want to say that $0^{0}=1$ then this is true. If you don't want to say that $0^{0}=1$; fine. Now suppose that $a \neq 0$. Then we can substitute $x=\frac{b}{a}$ into the first equation to get

$$
\begin{aligned}
\left(1+\frac{b}{a}\right)^{n} & =\sum_{k=0}^{n}\binom{n}{k}\left(\frac{b}{a}\right)^{k} \\
\left(\frac{a+b}{a}\right)^{n} & =\sum_{k=0}^{n}\binom{n}{k}\left(\frac{b}{a}\right)^{k} \\
\frac{(a+b)^{n}}{a^{n}} & =\sum_{k=0}^{n}\binom{n}{k} \frac{b^{k}}{a^{k}} \\
a^{n} \frac{(a+b)^{n}}{a^{n}} & =a^{n} \sum_{k=0}^{n}\binom{n}{k} \frac{b^{k}}{a^{k}} \\
(a+b)^{n} & =\sum_{k=0}^{n}\binom{n}{k} \frac{a^{n} b^{k}}{a^{k}} \\
(a+b)^{n} & =\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} .
\end{aligned}
$$

Problem 2 (Freshman's Dream). Formally write up the proof of the "Freshman's Dream". That is, for all $a, b, p \in \mathbb{Z}$ with p prime, prove that

$$
(a+b)^{p} \equiv a^{p}+b^{p} \quad(\bmod p) .
$$

[Hint: Use the Binomial Theorem and show that for all $0<k<p$ we have $\left.p\right|_{\left.\frac{p!}{k!} p-k\right)!}$ because p divides the numerator but p does not divide the denominator. You will need Euclid's Lemma.]

Proof. Let $a, b, p \in \mathbb{Z}$ with p prime. The binomial theorem says that

$$
(a+b)^{p}=a^{p}+\binom{p}{1} a b^{p-1}+\binom{p}{2} a^{2} b^{p-2}+\cdots+\binom{p}{p-1} a b^{p-1}+b^{p} .
$$

We will be done if we can show that each of the terms on the right side except a^{p} and b^{p} is divisible by $p($ and hence $\equiv 0 \bmod p)$. In fact we will show that p divides $\binom{p}{k}$ for all $1 \leq k \leq p-1$. Recall that we proved

$$
\binom{p}{k}=\frac{p!}{k!(p-k)!} .
$$

The expression on the right does not look like an integer, but it is an integer because $\binom{p}{k}$ is an integer. This means that if we factor the numerator p ! and denominator $k!(p-k)$! into primes, each of the primes in the denominator will cancel with some prime in the numerator. Note that p divides p !, so p occurs in the prime factorization of the numerator. We will be done if we can show that p does not occur in the prime factorization of the denominator. Suppose for contradiction that we have

$$
p \mid k(k-1)(k-2) \cdots 3 \cdot 2 \cdot 1 \cdot(p-k)(p-k-1) \cdots 3 \cdot 2 \cdot 1 .
$$

Since p is prime Euclid's Lemma then implies that p must divide one of the factors on the right. But since $1 \leq k \leq p-1$ each of these factors is smaller than p. Contradiction. We conclude that after cancellation, a p remains in the prime factorization of $\binom{p}{k}$.

Problem 3 (Fermat's little Theorem). Formally write up Euclid's 1736 proof of "Fermat's little Theorem". That is, for all $a, p \in \mathbb{Z}$ with p prime, prove that

$$
a^{p} \equiv a \quad(\bmod p) .
$$

[Hint: Let p be prime and let $P(n)$ be the statement that " $n^{p} \equiv n(\bmod p)$ ". Use induction to prove that $P(n)=T$ for all $n \geq 0$. The induction step will use the Freshman's Dream.]

Proof. Given an integer $n \geq 0$ consider the statement $P(n)=" n p n(\bmod n)$ ". We want to show that $P(n)=T$ for all $n \geq 0$. First we observe that the base case $P(0)$ is true because $0^{p}=0$, so clearly $0^{p} \equiv 0(\bmod p)$. Now fix an arbitrary $k \geq 0$ and assume for induction that $P(k)=T$. That is, assume that $k^{p} \equiv k(\bmod p)$. In this case we want to show that $P(k+1)$ is true. Using the Freshman's Dream, we have

$$
(k+1)^{p} \equiv k^{p}+1^{p} \equiv k+1 \quad(\bmod p) .
$$

[In the last equation we used the fact that $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod n)$ imply $a+b \equiv a^{\prime}+b^{\prime}$ $(\bmod n)$, which you proved on a previous homework. In our case we used that $k^{p} \equiv k(\bmod p)$ and $1^{p} \equiv 1(\bmod p)$ imply $k^{p}+1^{p} \equiv k+1(\bmod p)$.] By induction we conclude that $P(n)=T$ for all $n \geq 0$.

The question also mentions that $a^{p} \equiv a(\bmod p)$ for negative integers a. How can we show this? First note that if a is negative then we always have $a \equiv n(\bmod p)$ for some positive n. Then we have

$$
a^{p} \equiv n^{p} \equiv n \equiv a \quad(\bmod p) .
$$

[Here we used the fact that $a \equiv a^{\prime}(\bmod n)$ and $b \equiv b^{\prime}(\bmod p)$ imply $a b \equiv a^{\prime} b^{\prime}(\bmod n)$, which you also proved on a previous homework.]

Problem 4 (Generalization of Fermat's little Theorem).

(a) Let $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. If $a \mid c$ and $b \mid c$, prove that $a b \mid c$. [Hint: Use Bézout to write $a x+b y=1$ and multiply both sides by c.]
(b) Fermat's little Theorem can be stated as follows: for all $a, p \in \mathbb{Z}$ with p prime and $\operatorname{gcd}(a, p)=1$ we have $a^{p-1} \equiv 1(\bmod p)$. To apply this to cryptography we need a slightly more general result: For all $a, p, q \in \mathbb{Z}$ with p and q prime and $\operatorname{gcd}(a, p q)=1$, we have

$$
a^{(p-1)(q-1)} \equiv 1 \quad(\bmod p q) .
$$

Prove this. [Hint: The condition $\operatorname{gcd}(a, p q)=1$ implies $p \nmid a$ and $q \nmid a$. We want to show that $p q$ divides $a^{(p-1)(q-1)}-1$. First, observe that q does not divide a^{p-1} since otherwise Euclid's Lemma implies that q divides a. Then Fermat's little Theorem says that q divides $\left(a^{p-1}\right)^{q-1}-1=a^{(p-1)(q-1)}-1$, and similarly p divides $a^{(p-1)(q-1)}-1$. Now use part (a).]

Proof. To show (a), consider $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. Now assume that $a \mid c$ and $b \mid c$, say $c=a k$ and $c=b \ell$. We want to show that $a b \mid c$. Indeed, by Bézout's Identity there exist $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Then multiplying both sides by c gives

$$
\begin{aligned}
a x+b y & =1 \\
a c x+b c y & =c \\
a b \ell x+b a k y & =c \\
a b(\ell x+k y) & =c .
\end{aligned}
$$

We conclude that $a b \mid c$.
For part (b) consider $a, p, q \in \mathbb{Z}$ with p, q prime and $\operatorname{gcd}(a, p q)=1$. This implies that $p \nmid a$ since otherwise p would be a common divisor of a and $p q$. Similarly we have $q \nmid a$. Now we want to show that

$$
a^{(p-1)(q-1)} \equiv 1 \quad(\bmod p q) .
$$

First note that $q \nmid a^{p-1}$. If it did then we would have

$$
q \mid a a a \cdots a .
$$

Then since q is prime, Euclid's Lemma says that q must divide one of the factors on the right, i.e. we must have $q \mid a$. Contradiction. Now since $q \wedge a^{p-1}$ and q is prime, Fermat's little Theorem says that

$$
\left(a^{p-1}\right)^{q-1} \equiv 1 \quad(\bmod q) .
$$

In other words, q divides $\left(a^{p-1}\right)^{q-1}-1=a^{(p-1)(q-1)}-1$. Using exactly the same argument we can show that p divides $a^{(p-1)(q-1)}-1$. Then since p and q both divide $a^{(p-1)(q-1)}-1$ and since $\operatorname{gcd}(p, q)=1$, part (a) says that

$$
p q \mid\left(a^{(p-1)(q-1)}-1\right) .
$$

In other words, $a^{(p-1)(q-1)} \equiv 1(\bmod p)$.

