Math 230 E Fall 2013
Homework 6 Drew Armstrong

Problem 1 (Binomial Theorem). We proved in class that for all n > 0 we have

(1+2)" Z Kl (n —
Use this to prove that for all integers a,b € Z we have

nfk: k
(a+b)" Zk'n— b".

[Hint: Show directly that the result holds when a = 0. When a # 0, substitute z = 2 then
then multiply both sides by a™.]

Proof. To save space 1 will write (Z) instead of ﬁ First suppose that a = 0. Then we
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If you want to say that 0° = 1 then this is true. If you don’t want to say that 0° = 1; fine.
Now suppose that a # 0. Then we can substitute x = g into the first equation to get
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Problem 2 (Freshman’s Dream). Formally write up the proof of the “Freshman’s Dream”.
That is, for all a,b,p € Z with p prime, prove that

(a+bP =a? +b” (mod p).

[Hint: Use the Binomial Theorem and show that for all 0 < k& < p we have p| Ales k:)' because p
divides the numerator but p does not divide the denominator. You will need Euchd’s Lemma.|
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Proof. Let a,b,p € Z with p prime. The binomial theorem says that
(@+o)P =a? + (P)art + (P)a2op 24 [ P )arpt 0P,
1 2 p—1
We will be done if we can show that each of the terms on the right side except aP and O

is divisible by p (and hence = 0 mod p). In fact we will show that p divides (7,2) for all
1 <k <p-—1. Recall that we proved

() = womr

The expression on the right does not look like an integer, but it is an integer because (k) is an
integer. This means that if we factor the numerator p! and denominator k!(p — k)! into primes,
each of the primes in the denominator will cancel with some prime in the numerator. Note
that p divides p!, so p occurs in the prime factorization of the numerator. We will be done if
we can show that p does not occur in the prime factorization of the denominator. Suppose
for contradiction that we have

plk(k—1)(k—2)---3-2-1-(p—k)(p—k—1)---3-2-1.

Since p is prime Euclid’s Lemma then implies that p must divide one of the factors on the
right. But since 1 < k < p — 1 each of these factors is smaller than p. Contradiction. We
conclude that after cancellation, a p remains in the prime factorization of (i) O

Problem 3 (Fermat’s little Theorem). Formally write up Euclid’s 1736 proof of “Fermat’s
little Theorem”. That is, for all a,p € Z with p prime, prove that

a’? =a (mod p).

[Hint: Let p be prime and let P(n) be the statement that “n? = n (mod p)”. Use induction
to prove that P(n) =T for all n > 0. The induction step will use the Freshman’s Dream.]

Proof. Given an integer n > 0 consider the statement P(n) = “n? = n (mod n)”. We want
to show that P(n) =T for all n > 0. First we observe that the base case P(0) is true because
0? = 0, so clearly 0P = 0 (mod p). Now fix an arbitrary k¥ > 0 and assume for induction
that P(k) = T. That is, assume that k¥ = k (mod p). In this case we want to show that
P(k +1) is true. Using the Freshman’s Dream, we have

(k+1)P=kP+1P=k+1 (mod p).

[In the last equation we used the fact that a = @’ (mod n) and b = b (mod n) imply a+b = o’ +b’
(mod n), which you proved on a previous homework. In our case we used that k¥ = k (mod p)
and 1” =1 (mod p) imply kP + 17 = k+1 (mod p).] By induction we conclude that P(n) =T
for all n > 0.

The question also mentions that a? = a (mod p) for negative integers a. How can we show
this? First note that if a is negative then we always have a = n (mod p) for some positive n.
Then we have

a?=n’ =n=a (mod p).
[Here we used the fact that @ = o/ (mod n) and b =V (mod p) imply ab = a'b' (mod n), which
you also proved on a previous homework.] O

Problem 4 (Generalization of Fermat’s little Theorem).

(a) Let a,b,c € Z with ged(a,b) = 1. If a|c and b|c, prove that ab|c. [Hint: Use Bézout to
write ax 4+ by = 1 and multiply both sides by c.]



(b) Fermat’s little Theorem can be stated as follows: for all a,p € Z with p prime and
ged(a,p) = 1 we have a?~! = 1 (mod p). To apply this to cryptography we need a
slightly more general result: For all a,p,q € Z with p and ¢ prime and ged(a, pg) = 1,
we have

a1 =1 (mod pq).
Prove this. [Hint: The condition gcd(a,pg) = 1 implies p fa and ¢ fa. We want to
show that pq divides a®® D@1 _ 1. First, observe that ¢ does not divide a?~! since
otherwise Fuclid’s Lemma implies that ¢ divides a. Then Fermat’s little Theorem says
that ¢ divides (a?~1)9~! — 1 = a(P~D=1) — 1, and similarly p divides aP~D(@=1 — 1,
Now use part (a).]

Proof. To show (a), consider a,b,c¢ € Z with ged(a,b) = 1. Now assume that a|c and b|e,
say ¢ = ak and ¢ = bl. We want to show that ab|c. Indeed, by Bézout’s Identity there exist
x,y € Z such that ax + by = 1. Then multiplying both sides by ¢ gives
ar +by=1
acx + bey = ¢
ablx + baky = ¢
ab(lx + ky) = c.
We conclude that ablc.

For part (b) consider a,p,q € Z with p, g prime and ged(a, pq) = 1. This implies that pfa
since otherwise p would be a common divisor of a and pgq. Similarly we have ¢ /a. Now we
want to show that

aP V@) =1 (mod pq).
First note that ¢faP~!. If it did then we would have

qlaaa - - - a.

Then since q is prime, Euclid’s Lemma says that ¢ must divide one of the factors on the right,
i.e. we must have gla. Contradiction. Now since q /aP~! and q is prime, Fermat’s little
Theorem says that

(a1 =1 (mod q).
In other words, ¢ divides (a?~ )91 — 1 = a(P~D@=1 _ 1, Using exactly the same argument
we can show that p divides a»~1(@=1 — 1. Then since p and ¢ both divide a?~D@=1) —1 and
since ged(p, q) = 1, part (a) says that

pg|(aP~D=1) _ 1),
In other words, a®~ D@1 =1 (mod p). O



