Problem 1 (Binomial Theorem). We proved in class that for all $n \geq 0$ we have

$$
(1+x)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x^{k} .
$$

Use this to prove that for all integers $a, b \in \mathbb{Z}$ we have

$$
(a+b)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{n-k} b^{k} .
$$

[Hint: Show directly that the result holds when $a=0$. When $a \neq 0$, substitute $x=\frac{b}{a}$ then then multiply both sides by a^{n}.]

Problem 2 (Freshman's Dream). Formally write up the proof of the "Freshman's Dream". That is, for all $a, b, p \in \mathbb{Z}$ with p prime, prove that

$$
(a+b)^{p} \equiv a^{p}+b^{p} \quad(\bmod p) .
$$

[Hint: Use the Binomial Theorem and show that for all $0<k<p$ we have $p \left\lvert\, \frac{p!}{k!(p-k)!}\right.$ because p divides the numerator but p does not divide the denominator. You will need Euclid's Lemma.]

Problem 3 (Fermat's little Theorem). Formally write up Euclid's 1736 proof of "Fermat's little Theorem". That is, for all $a, p \in \mathbb{Z}$ with p prime, prove that

$$
a^{p} \equiv a \quad(\bmod p) .
$$

[Hint: Let p be prime and let $P(n)$ be the statement that " $n^{p} \equiv n(\bmod p)$ ". Use induction to prove that $P(n)=T$ for all $n \geq 0$. The induction step will use the Freshman's Dream.]

Problem 4 (Generalization of Fermat's little Theorem).

(a) Let $a, b, c \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. If $a \mid c$ and $b \mid c$, prove that $a b \mid c$. [Hint: Use Bézout to write $a x+b y=1$ and multiply both sides by c.]
(b) Fermat's little Theorem can be stated as follows: for all $a, p \in \mathbb{Z}$ with p prime and $\operatorname{gcd}(a, p)=1$ we have $a^{p-1} \equiv 1(\bmod p)$. To apply this to cryptography we need a slightly more general result: For all $a, p, q \in \mathbb{Z}$ with p and q prime and $\operatorname{gcd}(a, p q)=1$, we have

$$
a^{(p-1)(q-1)} \equiv 1 \quad(\bmod p q) .
$$

Prove this. [Hint: The condition $\operatorname{gcd}(a, p q)=1$ implies $p \nmid a$ and $q \nmid a$. We want to show that $p q$ divides $a^{(p-1)(q-1)}-1$. First, observe that q does not divide a^{p-1} since otherwise Euclid's Lemma implies that q divides a. Then Fermat's little Theorem says that q divides $\left(a^{p-1}\right)^{q-1}-1=a^{(p-1)(q-1)}-1$, and similarly p divides $a^{(p-1)(q-1)}-1$. Now use part (a).]

