Problem 1. Use induction to prove that for all integers $n \ge 1$ we have

$$(1^{3} + 2^{3} + 3^{3} + \dots + n^{3}) = (1 + 2 + \dots + n)^{2}$$
."

This result appears in the Aryabhatiya of Aryabhata (499 CE, when he was 23 years old). [Hint: You may assume the result $1 + 2 + \cdots + n = n(n+1)/2$.]

Proof. Let P(n) be the statement:

"
$$1^3 + 2^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2 = \frac{n^2(n+1)^2}{4}.$$

Note that the statement P(1) is true because $1^3 = (1^2 \cdot 2^2)/4$. Now **assume** that P(k) is true for some (fixed, but arbitrary) $k \ge 1$. That is, assume $1^3 + 2^3 + \cdots + k^3 = k^2(k+1)^2/4$. In this case, we wish to show that P(k+1) is also true. Indeed, we have

$$1^{3} + 2^{3} + \dots + (k+1)^{3} = (1^{3} + 2^{3} + \dots + k^{3}) + (k+1)^{3}$$
$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$
$$= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1)\right]$$
$$= \frac{(k+1)^{2}}{4} \left[k^{2} + 4k + 4\right]$$
$$= \frac{(k+1)^{2}}{4} (k+2)^{2}$$
$$= \frac{(k+1)^{2}((k+1)+1)^{2}}{4},$$

hence P(k+1) is true. By induction we conclude that P(n) is true for all $n \ge 1$.

Problem 2. Recall that $a \equiv b \pmod{n}$ means that n|(a - b). Use induction to prove that for all $n \geq 2$, the following holds:

"if $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ such that each $a_i \equiv 1 \pmod{4}$, then $a_1 a_2 \cdots a_n \equiv 1 \pmod{4}$."

[Hint: Call the statement P(n). Note that P(n) is a statement about **all** collections of n inegers. Therefore, when proving $P(k) \Rightarrow P(k+1)$ you must say "Assume that P(k) = T and consider any $a_1, a_2, \ldots, a_{k+1} \in \mathbb{Z}$." What is the base case?]

Proof. Let P(n) be the statement: "For any collection of n integers $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ such that $a_i \equiv 1 \mod 4$ for all $1 \leq i \leq n$, we have $a_1 a_2 \cdots a_n \equiv 1 \mod 4$." Note that the statement P(2) is true, since given any $a_1, a_2 \in \mathbb{Z}$ with $a_1 = 4k_1 + 1$ and $a_2 = 4k_2 + 1$, we have

$$a_1a_2 = (4k_1 + 1)(4k_2 + 1) = 16k_1k_2 + 4(k_1 + k_2) + 1 = 4(4k_1k_2 + k_1 + k_2) + 1.$$

Now **assume** that the statement P(k) is true for some (fixed, but arbitrary) $k \ge 2$. In this case, we wish to show that P(k+1) is also true. So consider any collection of k+1 integers $a_1, a_2, \ldots, a_{k+1} \in \mathbb{Z}$ such that $a_i \equiv 1 \mod 4$ for all $1 \le i \le k+1$, and then consider the product

 $a_1a_2\cdots a_{k+1}$. If we let $b = a_1a_2\cdots a_k$, then since P(k) is true, we know that $b \equiv 1 \mod 4$. But then since P(2) is true we have

$$a_1 a_2 \cdots a_{k+1} \equiv b a_{k+1} \equiv 1 \mod 4,$$

as desired. By induction, we conclude that P(n) is true for all $n \ge 2$.

Problem 3 (Generalization of Euclid's Proof of Infinite Primes)

- (a) Consider an integer n > 1. **Prove** that if $n \equiv 3 \pmod{4}$ then n has a prime factor of the form $p \equiv 3 \pmod{4}$. [Hint: You may assume that n has a prime factor p, which we proved in class. Note that there are three kinds of primes: the number 2, primes $p \equiv 1 \mod 4$ and primes $p \equiv 3 \mod 4$. Use Problem 2.]
- (b) Prove that there are infinitely many prime numbers of the form $p \equiv 3 \pmod{4}$. [Hint: Assume there are only **finitely** many and call them $3 < p_1 < p_2 < \cdots < p_k$. Then consider the number $N := 4p_1p_2\cdots p_k + 3$. By part (a) this N has a prime factor of the form $p \equiv 3 \pmod{4}$. Show that this p is not in the list. Contradiction.]

Proof. To prove (a) let n > 1 be an integer such that $n \equiv 3 \mod 4$. Consider its prime factorization

$$n = q_1 q_2 \cdots q_m$$

Since n is odd (why?), the prime 2 does not appear in this factorization, so each prime factor is either $q_i \equiv 1 \mod 4$ or $q_i \equiv 3 \mod 4$. We claim that **at least one prime factor** is $\equiv 3 \mod 4$. Suppose not, i.e., suppose that **every** prime factor is $\equiv 1 \mod 4$. Then n is a product of numbers $\equiv 1 \mod 4$, hence by Problem 2, n itself is $\equiv 1 \mod 4$. Contradiction.

To prove (b) suppose for contradiction that there are only **finitely many** primes of the form 3 mod 4, and call them $3 < p_1 < p_2 < \cdots < p_k$. (The fact that I didn't call $3 = p_1$ is a small trick. We will need it later on.) Now consider the number

$$N := 4p_1p_2\cdots p_k + 3.$$

We have $N \equiv 3 \mod 4$, hence by part (a) there exists a prime $p \equiv 3 \mod 4$ such that p|N. If we can show that this prime p is not in the set $\{3, p_1, \ldots, p_k\}$, we will obtain a contradiction. (We really needed part (a) because if $p \equiv 1 \mod 4$, then $p \notin \{3, p_1, \ldots, p_k\}$ is **not** a contradiction.) But notice that none of p_1, p_2, \ldots, p_k divides N, because if $p_i|N$ then we would have $p_i|(N - 4p_1 \cdots p_k)$, hence $p_i|3$. But this contradicts the fact that $3 < p_i$. Finally, we note that $p \neq 3$ because 3 doesn't divide N. (If 3|N then we would also have $3|4p_1 \cdots p_k$, and then Euclid's Lemma implies that 3|4 or $3|p_i$ for some i. Contradiction.) We conclude that

$$p \notin \{3, p_1, p_2, \ldots, p_k\},\$$

so p is a **new** prime of the form 3 mod 4, contradicting the assumption that we had all of them. \Box

Problem 4. Consider the following two statements/principles.

WO: Every nonempty subset $S \subseteq \mathbb{N} = \{1, 2, 3, ...\}$ has a least element.

PI: If $P : \mathbb{N} \to \{T, F\}$ is a family of statements satisfying

- P(1) = T and
- for any $k \ge 1$ we have $P(k) \Rightarrow P(k+1)$,

then P(n) = T for all $n \in \mathbb{N}$.

Now **prove** that WO \Rightarrow PI. [Hint: Assume WO and assume that $P : \mathbb{N} \to \{T, F\}$ is a family of statements satisfying the hypotheses of PI. You want to show that P(n) = T for all $n \ge 1$. Assume for contradiction that there exists $n \ge 1$ such that P(n) = F and let S be the set of numbers $n \ge 1$ such that P(n) = F. By WO the set S has a least element $m \in S$. Since P(1) = T we must have $m \ge 2$. Now use the existence m to derive a contradiction. Hence P(n) = T for all $n \ge 1$ and it follows that PI is true.]

Proof. We wish to show that $WO \Rightarrow PI$. So, (OPEN MENTAL PARENTHESIS **assume** that WO holds. In this case we want to show that PI holds. So, (OPEN MENTAL PARENTHESIS **assume** that we have $P : \mathbb{N} \to \{T, F\}$ such that P(1) = T and for any $k \ge 1$ we have $P(k) \Rightarrow P(k+1)$. In this case we want to show that P(n) = T for all $n \ge 1$. So, (OPEN MENTAL PARENTHESIS **assume for contradiction** that there exists some $n \ge 1$ such that P(n) = F and define the set

$$S := \{ n \ge 1 : P(n) = F \}.$$

By assumption this is a **nonempty** set of positive integers. Since we assumed that WO is true, the set S has a smallest element. Call it m. What do we know about this m? First of all, we know that P(m) = F because $m \in S$. Second, we know that $m \ge 2$ because we assumed P(1) = T. Third, we know that P(m-1) = T, otherwise we find that $m-1 \ge 1$ is a **smaller** element of S. Finally, the fact that P(m-1) = T and P(m) = F **contradicts** our assumption that $P(m-1) \Rightarrow P(m)$. CLOSE MENTAL PARENTHESIS) Hence P(n) = Tfor all $n \ge 1$. CLOSE MENTAL PARENTHESIS) And it follows that PI holds. CLOSE MENTAL PARENTHESIS) Finally, we conclude that WO \Rightarrow PI.