
Math 230 E Fall 2013
Homework 5 Drew Armstrong

Problem 1. Use induction to prove that for all integers n ≥ 1 we have

“13 + 23 + 33 + · · ·+ n3 = (1 + 2 + · · ·+ n)2.”

This result appears in the Aryabhatiya of Aryabhata (499 CE, when he was 23 years old).
[Hint: You may assume the result 1 + 2 + · · ·+ n = n(n + 1)/2.]

Proof. Let P (n) be the statement:

“13 + 23 + · · ·+ n3 =

[
n(n + 1)

2

]2
=

n2(n + 1)2

4
.”

Note that the statment P (1) is true because 13 = (12 · 22)/4. Now assume that P (k) is true
for some (fixed, but arbitrary) k ≥ 1. That is, assume 13 + 23 + · · · + k3 = k2(k + 1)2/4. In
this case, we wish to show that P (k + 1) is also true. Indeed, we have

13 + 23 + · · ·+ (k + 1)3 = (13 + 23 + · · ·+ k3) + (k + 1)3

=
k2(k + 1)2

4
+ (k + 1)3

= (k + 1)2
[
k2

4
+ (k + 1)

]
=

(k + 1)2

4

[
k2 + 4k + 4

]
=

(k + 1)2

4
(k + 2)2

=
(k + 1)2((k + 1) + 1)2

4
,

hence P (k + 1) is true. By induction we conclude that P (n) is true for all n ≥ 1. �

Problem 2. Recall that a ≡ b (mod n) means that n|(a − b). Use induction to prove that
for all n ≥ 2, the following holds:

“if a1, a2, . . . , an ∈ Z such that each ai ≡ 1 (mod 4), then a1a2 · · · an ≡ 1 (mod 4).”

[Hint: Call the statement P (n). Note that P (n) is a statement about all collections of n
inegers. Therefore, when proving P (k)⇒ P (k+ 1) you must say “Assume that P (k) = T and
consider any a1, a2, . . . , ak+1 ∈ Z.” What is the base case?]

Proof. Let P (n) be the statement: “For any collection of n integers a1, a2, . . . , an ∈ Z such
that ai ≡ 1 mod 4 for all 1 ≤ i ≤ n, we have a1a2 · · · an ≡ 1 mod 4.” Note that the statement
P (2) is true, since given any a1, a2 ∈ Z with a1 = 4k1 + 1 and a2 = 4k2 + 1, we have

a1a2 = (4k1 + 1)(4k2 + 1) = 16k1k2 + 4(k1 + k2) + 1 = 4(4k1k2 + k1 + k2) + 1.

Now assume that the statement P (k) is true for some (fixed, but arbitrary) k ≥ 2. In this
case, we wish to show that P (k + 1) is also true. So consider any collection of k + 1 integers
a1, a2, . . . , ak+1 ∈ Z such that ai ≡ 1 mod 4 for all 1 ≤ i ≤ k+1, and then consider the product



a1a2 · · · ak+1. If we let b = a1a2 · · · ak, then since P (k) is true, we know that b ≡ 1 mod 4.
But then since P (2) is true we have

a1a2 · · · ak+1 = bak+1 ≡ 1 mod 4,

as desired. By induction, we conclude that P (n) is true for all n ≥ 2. �

Problem 3 (Generalization of Euclid’s Proof of Infinite Primes)

(a) Consider an integer n > 1. Prove that if n ≡ 3 (mod 4) then n has a prime factor of
the form p ≡ 3 (mod 4). [Hint: You may assume that n has a prime factor p, which
we proved in class. Note that there are three kinds of primes: the number 2, primes
p ≡ 1 mod 4 and primes p ≡ 3 mod 4. Use Problem 2.]

(b) Prove that there are infinitely many prime numbers of the form p ≡ 3 (mod 4). [Hint:
Assume there are only finitely many and call them 3 < p1 < p2 < · · · < pk. Then
consider the number N := 4p1p2 · · · pk + 3. By part (a) this N has a prime factor of
the form p ≡ 3 (mod 4). Show that this p is not in the list. Contradiction.]

Proof. To prove (a) let n > 1 be an integer such that n ≡ 3 mod 4. Consider its prime
factorization

n = q1q2 · · · qm.

Since n is odd (why?), the prime 2 does not appear in this factorization, so each prime factor is
either qi ≡ 1 mod 4 or qi ≡ 3 mod 4. We claim that at least one prime factor is ≡ 3 mod 4.
Suppose not, i.e., suppose that every prime factor is ≡ 1 mod 4. Then n is a product of
numbers ≡ 1 mod 4, hence by Problem 2, n itself is ≡ 1 mod 4. Contradiction.

To prove (b) suppose for contradiction that there are only finitely many primes of the
form 3 mod 4, and call them 3 < p1 < p2 < · · · < pk. (The fact that I didn’t call 3 = p1 is a
small trick. We will need it later on.) Now consider the number

N := 4p1p2 · · · pk + 3.

We have N ≡ 3 mod 4, hence by part (a) there exists a prime p ≡ 3 mod 4 such that p|N . If we
can show that this prime p is not in the set {3, p1, . . . , pk}, we will obtain a contradiction. (We
really needed part (a) because if p ≡ 1 mod 4, then p 6∈ {3, p1, . . . , pk} is not a contradiction.)
But notice that none of p1, p2, . . . , pk divides N , because if pi|N then we would have pi|(N −
4p1 · · · pk), hence pi|3. But this contradicts the fact that 3 < pi. Finally, we note that p 6= 3
because 3 doesn’t divide N . (If 3|N then we would also have 3|4p1 · · · pk, and then Euclid’s
Lemma implies that 3|4 or 3|pi for some i. Contradiction.) We conclude that

p 6∈ {3, p1, p2, . . . , pk} ,

so p is a new prime of the form 3 mod 4, contradicting the assumption that we had all of
them. �

Problem 4. Consider the following two statements/principles.

WO: Every nonempty subset S ⊆ N = {1, 2, 3, . . .} has a least element.

PI: If P : N→ {T, F} is a family of statements satisfying

• P (1) = T and
• for any k ≥ 1 we have P (k)⇒ P (k + 1),



then P (n) = T for all n ∈ N.

Now prove that WO⇒ PI. [Hint: Assume WO and assume that P : N→ {T, F} is a family
of statements satisfying the hypotheses of PI. You want to show that P (n) = T for all n ≥ 1.
Assume for contradiction that there exists n ≥ 1 such that P (n) = F and let S be the set
of numbers n ≥ 1 such that P (n) = F . By WO the set S has a least element m ∈ S. Since
P (1) = T we must have m ≥ 2. Now use the existence m to derive a contradiction. Hence
P (n) = T for all n ≥ 1 and it follows that PI is true.]

Proof. We wish to show that WO⇒ PI. So, (OPEN MENTAL PARENTHESIS assume that
WO holds. In this case we want to show that PI holds. So, (OPEN MENTAL PARENTHESIS
assume that we have P : N → {T, F} such that P (1) = T and for any k ≥ 1 we have
P (k) ⇒ P (k + 1). In this case we want to show that P (n) = T for all n ≥ 1. So, (OPEN
MENTAL PARENTHESIS assume for contradiction that there exists some n ≥ 1 such
that P (n) = F and define the set

S := {n ≥ 1 : P (n) = F}.
By assumption this is a nonempty set of positive integers. Since we assumed that WO is
true, the set S has a smallest element. Call it m. What do we know about this m? First
of all, we know that P (m) = F because m ∈ S. Second, we know that m ≥ 2 because we
assumed P (1) = T . Third, we know that P (m− 1) = T , otherwise we find that m− 1 ≥ 1 is
a smaller element of S. Finally, the fact that P (m− 1) = T and P (m) = F contradicts our
assumption that P (m − 1) ⇒ P (m). CLOSE MENTAL PARENTHESIS) Hence P (n) = T
for all n ≥ 1. CLOSE MENTAL PARENTHESIS) And it follows that PI holds. CLOSE
MENTAL PARENTHESIS) Finally, we conclude that WO⇒ PI. �


