Problem 1. Use induction to prove that for all integers $n \geq 1$ we have

$$
" 1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2} . "
$$

This result appears in the Aryabhatiya of Aryabhata (499 CE, when he was 23 years old). [Hint: You may assume the result $1+2+\cdots+n=n(n+1) / 2$.]

Proof. Let $P(n)$ be the statement:

$$
" 1^{3}+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}=\frac{n^{2}(n+1)^{2}}{4}
$$

Note that the statment $P(1)$ is true because $1^{3}=\left(1^{2} \cdot 2^{2}\right) / 4$. Now assume that $P(k)$ is true for some (fixed, but arbitrary) $k \geq 1$. That is, assume $1^{3}+2^{3}+\cdots+k^{3}=k^{2}(k+1)^{2} / 4$. In this case, we wish to show that $P(k+1)$ is also true. Indeed, we have

$$
\begin{aligned}
1^{3}+2^{3}+\cdots+(k+1)^{3} & =\left(1^{3}+2^{3}+\cdots+k^{3}\right)+(k+1)^{3} \\
& =\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} \\
& =(k+1)^{2}\left[\frac{k^{2}}{4}+(k+1)\right] \\
& =\frac{(k+1)^{2}}{4}\left[k^{2}+4 k+4\right] \\
& =\frac{(k+1)^{2}}{4}(k+2)^{2} \\
& =\frac{(k+1)^{2}((k+1)+1)^{2}}{4}
\end{aligned}
$$

hence $P(k+1)$ is true. By induction we conclude that $P(n)$ is true for all $n \geq 1$.

Problem 2. Recall that $a \equiv b(\bmod n)$ means that $n \mid(a-b)$. Use induction to prove that for all $n \geq 2$, the following holds:
"if $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ such that each $a_{i} \equiv 1 \quad(\bmod 4)$, then $a_{1} a_{2} \cdots a_{n} \equiv 1 \quad(\bmod 4) . "$
[Hint: Call the statement $P(n)$. Note that $P(n)$ is a statement about all collections of n inegers. Therefore, when proving $P(k) \Rightarrow P(k+1)$ you must say "Assume that $P(k)=T$ and consider any $a_{1}, a_{2}, \ldots, a_{k+1} \in \mathbb{Z}$." What is the base case?]

Proof. Let $P(n)$ be the statement: "For any collection of n integers $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ such that $a_{i} \equiv 1 \bmod 4$ for all $1 \leq i \leq n$, we have $a_{1} a_{2} \cdots a_{n} \equiv 1 \bmod 4$." Note that the statement $P(2)$ is true, since given any $a_{1}, a_{2} \in \mathbb{Z}$ with $a_{1}=4 k_{1}+1$ and $a_{2}=4 k_{2}+1$, we have

$$
a_{1} a_{2}=\left(4 k_{1}+1\right)\left(4 k_{2}+1\right)=16 k_{1} k_{2}+4\left(k_{1}+k_{2}\right)+1=4\left(4 k_{1} k_{2}+k_{1}+k_{2}\right)+1
$$

Now assume that the statement $P(k)$ is true for some (fixed, but arbitrary) $k \geq 2$. In this case, we wish to show that $P(k+1)$ is also true. So consider any collection of $k+1$ integers $a_{1}, a_{2}, \ldots, a_{k+1} \in \mathbb{Z}$ such that $a_{i} \equiv 1 \bmod 4$ for all $1 \leq i \leq k+1$, and then consider the product
$a_{1} a_{2} \cdots a_{k+1}$. If we let $b=a_{1} a_{2} \cdots a_{k}$, then since $P(k)$ is true, we know that $b \equiv 1 \bmod 4$. But then since $P(2)$ is true we have

$$
a_{1} a_{2} \cdots a_{k+1}=b a_{k+1} \equiv 1 \bmod 4
$$

as desired. By induction, we conclude that $P(n)$ is true for all $n \geq 2$.

Problem 3 (Generalization of Euclid's Proof of Infinite Primes)

(a) Consider an integer $n>1$. Prove that if $n \equiv 3(\bmod 4)$ then n has a prime factor of the form $p \equiv 3(\bmod 4)$. [Hint: You may assume that n has a prime factor p, which we proved in class. Note that there are three kinds of primes: the number 2, primes $p \equiv 1 \bmod 4$ and primes $p \equiv 3 \bmod 4$. Use Problem 2.]
(b) Prove that there are infinitely many prime numbers of the form $p \equiv 3(\bmod 4)$. [Hint: Assume there are only finitely many and call them $3<p_{1}<p_{2}<\cdots<p_{k}$. Then consider the number $N:=4 p_{1} p_{2} \cdots p_{k}+3$. By part (a) this N has a prime factor of the form $p \equiv 3(\bmod 4)$. Show that this p is not in the list. Contradiction.]

Proof. To prove (a) let $n>1$ be an integer such that $n \equiv 3 \bmod 4$. Consider its prime factorization

$$
n=q_{1} q_{2} \cdots q_{m} .
$$

Since n is odd (why?), the prime 2 does not appear in this factorization, so each prime factor is either $q_{i} \equiv 1 \bmod 4$ or $q_{i} \equiv 3 \bmod 4$. We claim that at least one prime factor is $\equiv 3 \bmod 4$. Suppose not, i.e., suppose that every prime factor is $\equiv 1 \bmod 4$. Then n is a product of numbers $\equiv 1 \bmod 4$, hence by Problem $2, n$ itself is $\equiv 1 \bmod 4$. Contradiction.

To prove (b) suppose for contradiction that there are only finitely many primes of the form $3 \bmod 4$, and call them $3<p_{1}<p_{2}<\cdots<p_{k}$. (The fact that I didn't call $3=p_{1}$ is a small trick. We will need it later on.) Now consider the number

$$
N:=4 p_{1} p_{2} \cdots p_{k}+3 .
$$

We have $N \equiv 3 \bmod 4$, hence by part (a) there exists a prime $p \equiv 3 \bmod 4$ such that $p \mid N$. If we can show that this prime p is not in the set $\left\{3, p_{1}, \ldots, p_{k}\right\}$, we will obtain a contradiction. (We really needed part (a) because if $p \equiv 1 \bmod 4$, then $p \notin\left\{3, p_{1}, \ldots, p_{k}\right\}$ is not a contradiction.) But notice that none of $p_{1}, p_{2}, \ldots, p_{k}$ divides N, because if $p_{i} \mid N$ then we would have $p_{i} \mid(N-$ $4 p_{1} \cdots p_{k}$), hence $p_{i} \mid 3$. But this contradicts the fact that $3<p_{i}$. Finally, we note that $p \neq 3$ because 3 doesn't divide N. (If $3 \mid N$ then we would also have $3 \mid 4 p_{1} \cdots p_{k}$, and then Euclid's Lemma implies that $3 \mid 4$ or $3 \mid p_{i}$ for some i. Contradiction.) We conclude that

$$
p \notin\left\{3, p_{1}, p_{2}, \ldots, p_{k}\right\}
$$

so p is a new prime of the form $3 \bmod 4$, contradicting the assumption that we had all of them.

Problem 4. Consider the following two statements/principles.
WO: Every nonempty subset $S \subseteq \mathbb{N}=\{1,2,3, \ldots\}$ has a least element.
PI: If $P: \mathbb{N} \rightarrow\{T, F\}$ is a family of statements satisfying

- $P(1)=T$ and
- for any $k \geq 1$ we have $P(k) \Rightarrow P(k+1)$,
then $P(n)=T$ for all $n \in \mathbb{N}$.
Now prove that $\mathrm{WO} \Rightarrow \mathrm{PI}$. [Hint: Assume WO and assume that $P: \mathbb{N} \rightarrow\{T, F\}$ is a family of statements satisfying the hypotheses of Pl . You want to show that $P(n)=T$ for all $n \geq 1$. Assume for contradiction that there exists $n \geq 1$ such that $P(n)=F$ and let S be the set of numbers $n \geq 1$ such that $P(n)=F$. By WO the set S has a least element $m \in S$. Since $P(1)=T$ we must have $m \geq 2$. Now use the existence m to derive a contradiction. Hence $P(n)=T$ for all $n \geq 1$ and it follows that PI is true.]

Proof. We wish to show that $\mathrm{WO} \Rightarrow \mathrm{PI}$. So, (OPEN MENTAL PARENTHESIS assume that WO holds. In this case we want to show that PI holds. So, (OPEN MENTAL PARENTHESIS assume that we have $P: \mathbb{N} \rightarrow\{T, F\}$ such that $P(1)=T$ and for any $k \geq 1$ we have $P(k) \Rightarrow P(k+1)$. In this case we want to show that $P(n)=T$ for all $n \geq 1$. So, (OPEN MENTAL PARENTHESIS assume for contradiction that there exists some $n \geq 1$ such that $P(n)=F$ and define the set

$$
S:=\{n \geq 1: P(n)=F\}
$$

By assumption this is a nonempty set of positive integers. Since we assumed that WO is true, the set S has a smallest element. Call it m. What do we know about this m ? First of all, we know that $P(m)=F$ because $m \in S$. Second, we know that $m \geq 2$ because we assumed $P(1)=T$. Third, we know that $P(m-1)=T$, otherwise we find that $m-1 \geq 1$ is a smaller element of S. Finally, the fact that $P(m-1)=T$ and $P(m)=F$ contradicts our assumption that $P(m-1) \Rightarrow P(m)$. CLOSE MENTAL PARENTHESIS) Hence $P(n)=T$ for all $n \geq 1$. CLOSE MENTAL PARENTHESIS) And it follows that PI holds. CLOSE MENTAL PARENTHESIS) Finally, we conclude that $\mathrm{WO} \Rightarrow \mathrm{PI}$.

