Problem 1. Use induction to prove that for all integers $n \ge 1$ we have

$$(1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = (1 + 2 + \dots + n)^{2}$$
."

This result appears in the Aryabhatiya of Aryabhata (499 CE, when he was 23 years old). [Hint: You may assume the result $1 + 2 + \cdots + n = n(n+1)/2$.]

Problem 2. Recall that $a \equiv b \pmod{n}$ means that n|(a - b). Use induction to prove that for all $n \geq 2$, the following holds:

"if $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ such that each $a_i \equiv 1 \pmod{4}$, then $a_1 a_2 \cdots a_n \equiv 1 \pmod{4}$."

[Hint: Call the statement P(n). Note that P(n) is a statement about **all** collections of n inegers. Therefore, when proving $P(k) \Rightarrow P(k+1)$ you must say "Assume that P(k) = T and consider any $a_1, a_2, \ldots, a_{k+1} \in \mathbb{Z}$." What is the base case?]

Problem 3 (Generalization of Euclid's Proof of Infinite Primes)

- (a) Consider an integer n > 1. **Prove** that if $n \equiv 3 \pmod{4}$ then n has a prime factor of the form $p \equiv 3 \pmod{4}$. [Hint: You may assume that n has a prime factor p, which we proved in class. Note that there are three kinds of primes: the number 2, primes $p \equiv 1 \mod 4$ and primes $p \equiv 3 \mod 4$. Use Problem 2.]
- (b) Prove that there are infinitely many prime numbers of the form $p \equiv 3 \pmod{4}$. [Hint: Assume there are only **finitely** many and call them $3 < p_1 < p_2 < \cdots < p_k$. Then consider the number $N := 4p_1p_2\cdots p_k + 3$. By part (a) this N has a prime factor of the form $p \equiv 3 \pmod{4}$. Show that this p is not in the list. Contradiction.]

Problem 4. Consider the following two statements/principles.

WO: Every nonempty subset $S \subseteq \mathbb{N} = \{1, 2, 3, ...\}$ has a least element.

PI: If $P : \mathbb{N} \to \{T, F\}$ is a family of statements satisfying

- P(1) = T and
- for any $k \ge 1$ we have $P(k) \Rightarrow P(k+1)$,

then P(n) = T for all $n \in \mathbb{N}$.

Now **prove** that WO \Rightarrow PI. [Hint: Assume WO and assume that $P : \mathbb{N} \to \{T, F\}$ is a family of statements satisfying the hypotheses of PI. You want to show that P(n) = T for all $n \ge 1$. Assume for contradiction that there exists $n \ge 1$ such that P(n) = F and let S be the set of numbers $n \ge 1$ such that P(n) = F. By WO the set S has a least element $m \in S$. Since P(1) = T we must have $m \ge 2$. Now use the existence m to derive a contradiction. Hence P(n) = T for all $n \ge 1$ and it follows that PI is true.]