Problem 1. Use induction to prove that for all integers $n \geq 1$ we have

$$
" 1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2} . "
$$

This result appears in the Aryabhatiya of Aryabhata (499 CE , when he was 23 years old). [Hint: You may assume the result $1+2+\cdots+n=n(n+1) / 2$.]

Problem 2. Recall that $a \equiv b(\bmod n)$ means that $n \mid(a-b)$. Use induction to prove that for all $n \geq 2$, the following holds:
"if $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$ such that each $a_{i} \equiv 1 \quad(\bmod 4)$, then $a_{1} a_{2} \cdots a_{n} \equiv 1 \quad(\bmod 4) . "$
[Hint: Call the statement $P(n)$. Note that $P(n)$ is a statement about all collections of n inegers. Therefore, when proving $P(k) \Rightarrow P(k+1)$ you must say "Assume that $P(k)=T$ and consider any $a_{1}, a_{2}, \ldots, a_{k+1} \in \mathbb{Z}$." What is the base case?]

Problem 3 (Generalization of Euclid's Proof of Infinite Primes)

(a) Consider an integer $n>1$. Prove that if $n \equiv 3(\bmod 4)$ then n has a prime factor of the form $p \equiv 3(\bmod 4)$. [Hint: You may assume that n has a prime factor p, which we proved in class. Note that there are three kinds of primes: the number 2, primes $p \equiv 1 \bmod 4$ and primes $p \equiv 3 \bmod 4$. Use Problem 2.]
(b) Prove that there are infinitely many prime numbers of the form $p \equiv 3(\bmod 4)$. [Hint: Assume there are only finitely many and call them $3<p_{1}<p_{2}<\cdots<p_{k}$. Then consider the number $N:=4 p_{1} p_{2} \cdots p_{k}+3$. By part (a) this N has a prime factor of the form $p \equiv 3(\bmod 4)$. Show that this p is not in the list. Contradiction.]

Problem 4. Consider the following two statements/principles.
WO: Every nonempty subset $S \subseteq \mathbb{N}=\{1,2,3, \ldots\}$ has a least element.
PI: If $P: \mathbb{N} \rightarrow\{T, F\}$ is a family of statements satisfying

- $P(1)=T$ and
- for any $k \geq 1$ we have $P(k) \Rightarrow P(k+1)$,
then $P(n)=T$ for all $n \in \mathbb{N}$.
Now prove that $\mathrm{WO} \Rightarrow \mathrm{PI}$. [Hint: Assume WO and assume that $P: \mathbb{N} \rightarrow\{T, F\}$ is a family of statements satisfying the hypotheses of PI. You want to show that $P(n)=T$ for all $n \geq 1$. Assume for contradiction that there exists $n \geq 1$ such that $P(n)=F$ and let S be the set of numbers $n \geq 1$ such that $P(n)=F$. By WO the set S has a least element $m \in S$. Since $P(1)=T$ we must have $m \geq 2$. Now use the existence m to derive a contradiction. Hence $P(n)=T$ for all $n \geq 1$ and it follows that PI is true.]

